The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the "Earth Mover's Distance" (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way.
With the increasing number of images available electronically, automatic retrieval systems are becoming essential. This book introduces an absolute prerequisite for any such system: a metric, called the Earth Mover's Distance (EMD), for comparing images in terms of their appearance. This metric describes the amount of work that is necessary to transform one image into another, in a precisely defined mathematical sense, and in a flexible and perceptually meaningful manner. An efficient linear programming algorithm enables the computation of this metric fast enough to be used for the interactive retrieval of images from large repositories. The perceptual properties of the EMD, and the speed of its computation, lead to database navigation, a new paradigm for interacting with a repository of images. When navigating, the user is shown a very large number of images in response to a query. The EMD between pairs of images, together with a multidimensional scaling method, allows these images to be displayed so that similar images appear near to each other on the computer screen. In this way, the user can grasp at a glance what is returned, and can reach the images of interest with a small number of mouse clicks.
Extensive benchmark evaluations and example retrieval systems show the usefulness of the EMD and the advantages of image database navigation.
This book will be of interest to researchers, industrial professionals, and graduate and post-graduate students in the fields of Computer Vision; Image Processing; Data Mining; Digital Libraries; Psychophysics; Computer Science; Electrical Engineering.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-125188
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Seiten: 172 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 3031657/203
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The increasing amount of information available in today s world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front th. Bestandsnummer des Verkäufers 5970003
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the 'Earth Mover's Distance' (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 172 pp. Englisch. Bestandsnummer des Verkäufers 9780792372196
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the 'Earth Mover's Distance' (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way. Bestandsnummer des Verkäufers 9780792372196
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 756955-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 756955-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190184315
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The increasing amount of information available in today's world raises the need to retrieve relevant data efficiently. Unlike text-based retrieval, where keywords are successfully used to index into documents, content-based image retrieval poses up front the fundamental questions how to extract useful image features and how to use them for intuitive retrieval. We present a novel approach to the problem of navigating through a collection of images for the purpose of image retrieval, which leads to a new paradigm for image database search. We summarize the appearance of images by distributions of color or texture features, and we define a metric between any two such distributions. This metric, which we call the 'Earth Mover's Distance' (EMD), represents the least amount of work that is needed to rearrange the mass is one distribution in order to obtain the other. We show that the EMD matches perceptual dissimilarity better than other dissimilarity measures, and argue that it has many desirable properties for image retrieval. Using this metric, we employ Multi-Dimensional Scaling techniques to embed a group of images as points in a two- or three-dimensional Euclidean space so that their distances reflect image dissimilarities as well as possible. Such geometric embeddings exhibit the structure in the image set at hand, allowing the user to understand better the result of a database query and to refine the query in a perceptually intuitive way. 172 pp. Englisch. Bestandsnummer des Verkäufers 9780792372196
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 756955
Anzahl: Mehr als 20 verfügbar