Verwandte Artikel zu Functional Networks with Applications: A Neural-Based...

Functional Networks with Applications: A Neural-Based Paradigm: 473 (The Springer International Series in Engineering and Computer Science) - Hardcover

 
9780792383321: Functional Networks with Applications: A Neural-Based Paradigm: 473 (The Springer International Series in Engineering and Computer Science)

Inhaltsangabe

Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

Reseña del editor

This book introduces `functional networks', a novel neural-based paradigm, and shows that functional network architectures can be efficiently applied to solve many interesting practical problems.
Included is an introduction to neural networks, a description of functional networks, examples of applications, and computer programs in Mathematica and Java languages implementing the various algorithms and methodologies.
Special emphasis is given to applications in several areas such as:

  • Box-Jenkins AR(p), MA(q), ARMA(p,q), and ARIMA (p,d,q) models with application to real-life economic problems such as the consumer price index, electric power consumption and international airlines' passenger data. Random time series and chaotic series are considered in relation to the Hénon, Lozi, Holmes and Burger maps, as well as the problems of noise reduction and information masking.
  • Learning differential equations from data and deriving the corresponding equivalent difference and functional equations. Examples of a mass supported by two springs and a viscous damper or dashpot, and a loaded beam, are used to illustrate the concepts.
  • The problem of obtaining the most general family of implicit, explicit and parametric surfaces as used in Computer Aided Design (CAD).
  • Applications of functional networks to obtain general nonlinear regression models are given and compared with standard techniques.

Functional Networks with Applications: A Neural-Based Paradigm will be of interest to individuals who work in computer science, physics, engineering, applied mathematics, statistics, economics, and other neural networks and data analysis related fields.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum1998
  • ISBN 10 079238332X
  • ISBN 13 9780792383321
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten328
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Wie neu
Like New
Diesen Artikel anzeigen

EUR 29,47 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Functional Networks with Applications: A Neural-Based...

Foto des Verkäufers

Enrique Castillo|Angel Cobo|Jose Antonio Gutierrez|Rosa Eva Pruneda
Verlag: Springer US, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Bestandsnummer des Verkäufers 5970841

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Enrique Castillo
Verlag: Springer US Okt 1998, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes. 326 pp. Englisch. Bestandsnummer des Verkäufers 9780792383321

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Enrique Castillo
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 326 pp. Englisch. Bestandsnummer des Verkäufers 9780792383321

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Enrique Castillo
Verlag: Springer US, Springer US, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes. Bestandsnummer des Verkäufers 9780792383321

Verkäufer kontaktieren

Neu kaufen

EUR 114,36
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Castillo, Enrique; Cobo, Angel; Antonio Gutierrez, Jose; Pruneda, Rosa Eva
Verlag: Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9780792383321_new

Verkäufer kontaktieren

Neu kaufen

EUR 118,53
Währung umrechnen
Versand: EUR 5,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Enrique Castillo
Verlag: Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 666. Bestandsnummer des Verkäufers C9780792383321

Verkäufer kontaktieren

Neu kaufen

EUR 137,73
Währung umrechnen
Versand: EUR 7,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Castillo, Enrique; Cobo, Angel; Antonio Gutierrez, Jose; Pruneda, Rosa Eva
Verlag: Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Neu Hardcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190185201

Verkäufer kontaktieren

Neu kaufen

EUR 104,62
Währung umrechnen
Versand: EUR 65,17
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Castillo, Enrique, Cobo, Angel, Antonio Gutierrez, Jose, Pru
Verlag: Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Gebraucht Hardcover

Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA758079238332X6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 166,34
Währung umrechnen
Versand: EUR 29,47
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb