The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of "analog clock cycles" required to produce one effective output sample of the signal being quantized.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of "analog clock cycles" required to produce one effective output sample of the signal being quantized.
This volume of Analog Circuit Design concentrates on three topics: Low-Power Low-Voltage Design; Integrated Filters, and Smart Power. The book comprises six papers on each topic written by internationally recognised experts. These papers have a tutorial nature aimed at improving the design of analog circuits. The book is divided into three parts:
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Bestandsnummer des Verkäufers Z1-W-020-02637
Anzahl: 1 verfügbar
Anbieter: Kellogg Creek Books, Portland, OR, USA
Hardcover. Zustand: Fine. Binding tight, content clean and straight. Appears unread. Cover in excellent, shiny condition. If purchasing internationally, inquire about shipping charges before purchase. Ships within 1-2 business days. Bestandsnummer des Verkäufers 2646
Anbieter: Ammareal, Morangis, Frankreich
Hardcover. Zustand: Très bon. Ancien livre de bibliothèque avec équipements. Edition 1994. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 1994. Ammareal gives back up to 15% of this item's net price to charity organizations. Bestandsnummer des Verkäufers G-365-320
Anzahl: 1 verfügbar
Anbieter: Librairie Parrêsia, Figeac, Frankreich
Hardcover Nov 30, 1994. Zustand: Used: Good. Analog Circuit Design: Low-Power Low-Voltage, Integrated Filters and Smart Power | J. van de Plassche et alii | Kluwer Academic, 1995, in-8 cartonnage éditeur, 400 pages. Couverture propre. Dos solide. Intérieur frais. Exemplaire de bibliothèque : petit code barre en pied de 1re de couv., cotation au dos, rares et discrets petits tampons à l'intérieur de l'ouvrage. Bel état ! [BT35]. Bestandsnummer des Verkäufers 0705UN578BS
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 412 | Sprache: Englisch | Produktart: Bücher | The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of "analog clock cycles" required to produce one effective output sample of the signal being quantized. Bestandsnummer des Verkäufers 3011933/202
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Bestandsnummer des Verkäufers 5971551
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792395133_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of 'analog clock cycles' required to produce one effective output sample of the signal being quantized. 412 pp. Englisch. Bestandsnummer des Verkäufers 9780792395133
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Analog Circuit Design | Low-Power Low-Voltage, Integrated Filters and Smart Power | Rudy J. Van De Plassche (u. a.) | Buch | viii | Englisch | 1994 | Springer US | EAN 9780792395133 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 102548887
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of 'analog clock cycles' required to produce one effective output sample of the signal being quantized.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 412 pp. Englisch. Bestandsnummer des Verkäufers 9780792395133
Anzahl: 2 verfügbar