Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained.
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained.
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 12,24 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 2,28 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Bestandsnummer des Verkäufers Z1-B-017-02011
Anzahl: 1 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. 238 pp., Hardcover, BRAND NEW and in shrink wrap, although there is a remainder mark to bottom edge. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1159420
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 758028-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This text presents a method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other alternative algorithms for hardware-implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analogue hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed-weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780792395676
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190186014
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 758028
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792395676_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 758028-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 256 Index. Bestandsnummer des Verkäufers 263058080
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 256 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Bestandsnummer des Verkäufers 5838463
Anzahl: 1 verfügbar