Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem.
Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem.
Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Wonder Book, Frederick, MD, USA
Zustand: Good. Good condition. A copy that has been read but remains intact. May contain markings such as bookplates, stamps, limited notes and highlighting, or a few light stains. Bestandsnummer des Verkäufers L10A-03929
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 758272
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C 1039: (1997) 9780792399575 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2504575
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780792399575
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 758272-n
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190186338
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792399575_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. This text explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (for example, alphanumeric characters, aircraft silhouettes), and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem. This text serves as a reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns. Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780792399575
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 758272-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 758272
Anzahl: Mehr als 20 verfügbar