Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem.
Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Wonder Book, Frederick, MD, USA
Zustand: Good. Good condition. A copy that has been read but remains intact. May contain markings such as bookplates, stamps, limited notes and highlighting, or a few light stains. Bestandsnummer des Verkäufers L10A-03929
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C 1039: (1997) 9780792399575 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2504575
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Feb2416190186338
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 758272-n
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780792399575_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 758272-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 144. Bestandsnummer des Verkäufers 263099901
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 144 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Bestandsnummer des Verkäufers 5829410
Anzahl: 4 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Hardback. Zustand: New. 1997 ed. Human Face Recognition Using Third-Order Synthetic Neural Networks explores the viability of the application of High-order synthetic neural network technology to transformation-invariant recognition of complex visual patterns. High-order networks require little training data (hence, short training times) and have been used to perform transformation-invariant recognition of relatively simple visual patterns, achieving very high recognition rates. The successful results of these methods provided inspiration to address more practical problems which have grayscale as opposed to binary patterns (e.g., alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition is such a problem. Human Face Recognition Using Third-Order Synthetic Neural Networks serves as an excellent reference for researchers and professionals working on applying neural network technology to the recognition of complex visual patterns. Bestandsnummer des Verkäufers LU-9780792399575
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 144. Bestandsnummer des Verkäufers 183099895
Anzahl: 4 verfügbar