For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" NO-forms"’). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" NO-forms'''). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9780817611118
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9780817611118_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9780817611118
Anzahl: 10 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (' NO-forms'''). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not). 436 pp. Englisch. Bestandsnummer des Verkäufers 9780817611118
Anzahl: 2 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Series: Progress in Mathematics. Num Pages: 433 pages, 1 black & white illustrations, biography. BIC Classification: YQS. Category: (P) Professional & Vocational. Dimension: 229 x 152 x 23. Weight in Grams: 635. . 1979. Paperback. . . . . Bestandsnummer des Verkäufers V9780817611118
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 436. Bestandsnummer des Verkäufers 26101308196
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 611. Bestandsnummer des Verkäufers C9780817611118
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 436 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 108947707
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 436. Bestandsnummer des Verkäufers 18101308206
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 433 pages. 9.01x5.98x0.89 inches. In Stock. Bestandsnummer des Verkäufers x-0817611118
Anzahl: 2 verfügbar