In mathematics there are limits, speed limits of a sort, on how many computational steps are required to solve certain problems. The theory of computational complexity deals with such limits, in particular whether solving an n-dimensional version of a particular problem can be accomplished with, say, 2 n n steps or will inevitably require 2 steps. Such a bound, together with a physical limit on computational speed in a machine, could be used to establish a speed limit for a particular problem. But there is nothing in the theory of computational complexity which precludes the possibility of constructing analog devices that solve such problems faster. It is a general goal of neural network researchers to circumvent the inherent limits of serial computation. As an example of an n-dimensional problem, one might wish to order n distinct numbers between 0 and 1. One could simply write all n! ways to list the numbers and test each list for the increasing property. There are much more efficient ways to solve this problem; in fact, the number of steps required by the best sorting algorithm applied to this problem is proportional to n In n .
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In mathematics there are limits, speed limits of a sort, on how many computational steps are required to solve certain problems. The theory of computational complexity deals with such limits, in particular whether solving an n-dimensional version of a particular problem can be accomplished with, say, 2 n n steps or will inevitably require 2 steps. Such a bound, together with a physical limit on computational speed in a machine, could be used to establish a speed limit for a particular problem. But there is nothing in the theory of computational complexity which precludes the possibility of constructing analog devices that solve such problems faster. It is a general goal of neural network researchers to circumvent the inherent limits of serial computation. As an example of an n-dimensional problem, one might wish to order n distinct numbers between 0 and 1. One could simply write all n! ways to list the numbers and test each list for the increasing property. There are much more efficient ways to solve this problem; in fact, the number of steps required by the best sorting algorithm applied to this problem is proportional to n In n .
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 14,62 für den Versand von Kanada nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Book Dispensary, Concord, ON, Kanada
Hardcover. Zustand: Very Good. VERY GOOD hardcover, no marks in text, tight square spine; bright and clean. Book. Bestandsnummer des Verkäufers 041017
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. Like NewLIKE NEW. book. Bestandsnummer des Verkäufers ERICA83608176358583
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-129740
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-83782
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 166. Bestandsnummer des Verkäufers 183135310
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 166. Bestandsnummer des Verkäufers 263135300
Anzahl: 1 verfügbar
Anbieter: BOOKWEST, Phoenix, AZ, USA
Hardcover. Zustand: New. 1st Edition. SHRINK-WRAPPED: US SELLER SHIPS FAST FROM USA. Bestandsnummer des Verkäufers INTOK-147B1-2-0817635858-HC-1Pt6-HCB9
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 166. Bestandsnummer des Verkäufers 5793947
Anzahl: 1 verfügbar