Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. XIV, 112 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02604 9780817638108 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2488474
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 113 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 78329/202
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 113. Bestandsnummer des Verkäufers 18300578
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 113 1st Edition. Bestandsnummer des Verkäufers 26300584
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 113. Bestandsnummer des Verkäufers 7547383
Anzahl: 4 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-129852
Anzahl: Mehr als 20 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-76509
Anzahl: 5 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. First edition, first printing, 113 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1322686
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
gebundene Ausgabe. Zustand: Sehr gut. Progress in Nonlinear Differential Equations and Their Applications, Volume 17. Zust: Gutes Exemplar. XIV, 112 Seiten, Englisch 398g. Bestandsnummer des Verkäufers 492248
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-129853
Anzahl: 1 verfügbar