Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 113 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 78329/202
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. XIV, 112 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02604 9780817638108 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2488474
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 113. Bestandsnummer des Verkäufers 18300578
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 113 1st Edition. Bestandsnummer des Verkäufers 26300584
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 113. Bestandsnummer des Verkäufers 7547383
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-76509
Anzahl: 5 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. First edition, first printing, 113 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1322686
Anzahl: 1 verfügbar
Anbieter: UK BOOKS STORE, London, LONDO, Vereinigtes Königreich
Zustand: New. Brand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 6-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Bestandsnummer des Verkäufers CBS 9780817638108
Anzahl: Mehr als 20 verfügbar
Anbieter: URW Books Store, CASPER, WY, USA
Zustand: Brand New. Brand New! . "This is an International Edition." Book is In New condition and ship within One Working Day Tracking Number Provided by Customer 12-24 In To Hour, Deliver by FedEx & Aramex, UPS, & USPS Act. Order can be delivered worldwide With In 7-10 Working day Delivery. Ship from India & United States. Bestandsnummer des Verkäufers CBSBOOKS3871
Anzahl: Mehr als 20 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
gebundene Ausgabe. Zustand: Sehr gut. Progress in Nonlinear Differential Equations and Their Applications, Volume 17. Zust: Gutes Exemplar. XIV, 112 Seiten, Englisch 398g. Bestandsnummer des Verkäufers 492248
Anzahl: 1 verfügbar