1 Mathematical Preliminaries.- 1.1 The Pythagorean Theorem.- 1.2 Vectors.- 1.3 Subspaces and Linear Independence.- 1.4 Vector Space Bases.- 1.5 Euclidean Length.- 1.6 The Euclidean Inner Product.- 1.7 Projection onto a Line.- 1.8 Planes in-Space.- 1.9 Coordinate System Orientation.- 1.10 The Cross Product.- 2 Curves.- 2.1 The Tangent Curve.- 2.2 Curve Parameterization.- 2.3 The Normal Curve.- 2.4 Envelope Curves.- 2.5 Arc Length Parameterization.- 2.6 Curvature.- 2.7 The Frenet Equations.- 2.8 Involutes and Evolutes.- 2.9 Helices.- 2.10 Signed Curvature.- 2.11 Inflection Points.- 3 Surfaces.- 3.1 The Gradient of a Function.- 3.2 The Tangent Space and Normal Vector.- 3.3 Derivatives.- 4 Function and Space Curve Interpolation.- 5 2D-Function Interpolation.- 5.1 Lagrange Interpolating Polynomials.- 5.2 Whittaker's Interpolation Formula.- 5.3 Cubic Splines for 2D-Function Interpolation.- 5.4 Estimating Slopes.- 5.5 Monotone 2D Cubic Spline Functions.- 5.6 Error in 2D Cubic Spline Interpolation Functions.- 6 ?-Spline Curves With Range Dimension d.- 7 Cubic Polynomial Space Curve Splines.- 7.1 Choosing the Segment Parameter Limits.- 7.2 Estimating Tangent Vectors.- 7.3 Bézier Polynomials.- 8 Double Tangent Cubic Splines.- 8.1 Kochanek-Bartels Tangents.- 8.2 Fletcher-McAllister Tangent Magnitudes.- 9 Global Cubic Space Curve Splines.- 9.1 Second Derivatives of Global Cubic Splines.- 9.2 Third Derivatives of Global Cubic Splines.- 9.3 A Variational Characterization of Natural Splines.- 9.4 Weighted v-Splines.- 10 Smoothing Splines.- 10.1 Computing an Optimal Smoothing Spline.- 10.2 Computing the Smoothing Parameter.- 10.3 Best Fit Smoothing Cubic Splines.- 10.4 Monotone Smoothing Splines.- 11 Geometrically Continuous Cubic Splines.- 11.1 Beta Splines.- 12 Quadratic Space Curve Based Cubic Splines.- 13 Cubic Spline Vector Space Basis Functions.- 13.1 Bases for C1 and C2 Space Curve Cubic Splines.- 13.2 Cardinal Bases for Cubic Spline Vector Spaces.- 13.3 The B-Spline Basis for Global Cubic Splines.- 14 Rational Cubic Splines.- 15 Two Spline Programs.- 15.1 Interpolating Cubic Splines Program.- 15.2 Optimal Smoothing Spline Program.- 16 Tensor Product Surface Splines.- 16.1 Bicubic Tensor Product Surface Patch Splines.- 16.2 A Generalized Tensor Product Patch Spline.- 16.3 Regular Grid Multi-Patch Surface Interpolation.- 16.4 Estimating Tangent and Twist Vectors.- 16.5 Tensor Product Cardinal Basis Representation.- 16.6 Bicubic Splines with Variable Parameter Limits.- 16.7 Triangular Patches.- 16.8 Parametric Grids.- 16.9 3D-Function Interpolation.- 17 Boundary Curve Based Surface Splines.- 17.1 Boundary Curve Based Bilinear Interpolation.- 17.2 Boundary Curve Based Bicubic Interpolation.- 17.3 General Boundary Curve Based Spline Interpolation.- 18 Physical Splines.- 18.1 Computing a Space Curve Physical Spline Segment.- 18.2 Computing a 2D Physical Spline Segment.- References.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
"Spline functions arise in a number of fields: statistics, computer graphics, programming, computer-aided design technology, numerical analysis, and other areas of applied mathematics. Much work has focused on approximating splines such as B-splines and Bezier splines. In contrast, this book emphasizes interpolating splines. Almost always, the cubic polynomial form is treated in depth. Interpolating Cubic Splines covers a wide variety of explicit approaches to designing splines for the interpolation of points in the plane by curves, and the interpolation of points in 3-space by surfaces. These splines include various estimated-tangent Hermite splines and double-tangent splines, as well as classical natural splines and geometrically-continuous splines such as beta-splines and n-splines. A variety of special topics are covered, including monotonic splines, optimal smoothing splines, basis representations, and exact energy-minimizing physical splines. An in-depth review of the differential geometry of curves and a broad range of exercises, with selected solutions, and complete computer programs for several forms of splines and smoothing splines, make this book useful for a broad audience: students, applied mathematicians, statisticians, engineers, and practicing programmers involved in software development in computer graphics, CAD, and various engineering applications."--Zentralblatt Math
The study of spline functions is an outgrowth of basic mathematical concepts arising from calculus, analysis and numerical analysis. Spline modelling affects a number of fields: statistics; computer graphics; CAD programming, and other areas of applied mathematics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 21,44 für den Versand von Kanada nach Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Attic Books (ABAC, ILAB), London, ON, Kanada
Hardcover. Zustand: Near fine. Progress in Computer Science and Applied Logic Vol. 18. xii, 244 p. 24 cm. Top front corner bumped. Bestandsnummer des Verkäufers 155225
Anzahl: 1 verfügbar
Anbieter: Berliner Büchertisch eG, Berlin, Deutschland
Hardcover. Zustand: Gut. 2000. XII, 244 S. Gutes Exemplar, geringe Gebrauchsspuren, Cover/SU berieben/bestoßen, innen alles in Ordnung; Good copy, light signs of previous use, cover/dust jacket shows some rubbing/wear, interior in good condition. C240916ah179 ISBN: 9780817641009 Sprache: Englisch Gewicht in Gramm: 531. Bestandsnummer des Verkäufers 705465
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 240. Bestandsnummer des Verkäufers 18457689
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 240 1st Edition. Bestandsnummer des Verkäufers 26457683
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 240. Bestandsnummer des Verkäufers 7422988
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-87282
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-130026
Anzahl: 1 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: New. 244 pp., Hardcover, NEW!! - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1329917
Anzahl: 1 verfügbar
Anbieter: Carpe Diem Fine Books, ABAA, Monterey, CA, USA
Hardcover. 1st. 8vo. 244pp. Bibliography; Index. Figures; Exercises. Glossy printed boards in fine condition. ". covers a wide variety of explicit approaches to designing splines for the interpolation of points in the plane by curves, and the interpolation of points in 3-space by surfaces." Next day shipping. Celebrating our 15th year - all domestic orders ship with Delivery Confirmation Tracking Number - Images available upon request. Bestandsnummer des Verkäufers 13182
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Spline modeling affects a number of fields, including statistics, computer graphics, CAD programming and other areas of applied mathematics. This book presents a detailed examination of cubic splines which includes a significant amount of original material not found elsewhere in the literature. Several C programs with interesting computational approaches supply the reader with a number of useful tools. The clear and concise presentation includes many interesting exercises. 260 pp. Englisch. Bestandsnummer des Verkäufers 9780817641009
Anzahl: 2 verfügbar