Verwandte Artikel zu Memoirs Of The American Mathematical Society, Number...

Memoirs Of The American Mathematical Society, Number 675 : Renormalized Self-Intersection, Local Times And Wick Power Chaos Processes - Softcover

 
9780821813409: Memoirs Of The American Mathematical Society, Number 675 : Renormalized Self-Intersection, Local Times And Wick Power Chaos Processes

Inhaltsangabe

Sufficient conditions are obtained for the continuity of renormalized self-intersection local times for the multiple intersections of a large class of strongly symmetric Levy processes in $R^m$, $m=1,2$. In $R^2$ these include Brownian motion and stable processes of index greater than 3/2, as well as many processes in their domains of attraction. In $R^1$ these include stable processes of index $3/4<\beta\le 1$ and many processes in their domains of attraction.Let $(\Omega, \mathcal F(t),X(t), P^{x})$ be one of these radially symmetric Levy processes with 1-potential density $u^1(x,y)$. Let $\mathcal G^{2n}$ denote the class of positive finite measures $\mu$ on $R^m$ for which $\int\!\!\int (u^1(x,y))^{2n}\,d\mu(x)\,d\mu(y)<\infty$. For $\mu\in\mathcal G^{2n}$, let $\alpha_{n,\epsilon}(\mu,\lambda) \overset\text{def}\to=\int\!\!\int_{\{0\leq t_1\leq \cdots \leq t_n\leq \lambda\}} f_{\epsilon}(X(t_1)-x)\prod_{j=2}^n f_{\epsilon}(X(t_j)- X(t_{j-1}))\,dt_1\cdots\,dt_n\,d\mu(x)$ where $f_{\epsilon}$ is an approximate $\delta-$function at zero and $\lambda$ is an random exponential time, with mean one, independent of $X$, with probability measure $P_\lambda$.The renormalized self-intersection local time of $X$ with respect to the measure $\mu$ is defined as $\gamma_{n}(\mu)=\lim_{\epsilon\to 0}\,\sum_{k=0}^{n-1}(-1)^{k} {n-1 \choose k}(u^1_{\epsilon}(0))^{k} \alpha_{n-k,\epsilon}(\mu,\lambda)$ where $u^1_{\epsilon}(x)\overset\text{def}\to= \int f_{\epsilon}(x-y)u^1(y)\,dy$, with $u^1(x)\overset\text{def} \to= u^1(x+z,z)$ for all $z\in R^m$. Conditions are obtained under which this limit exists in $L^2(\Omega\times R^+,P^y_\lambda)$ for all $y\in R^m$, where $P^y_\lambda\overset\text{def}\to= P^y\times P_\lambda$. Let $\{\mu_x,x\in R^m\}$ denote the set of translates of the measure $\mu$.The main result in this paper is a sufficient condition for the continuity of $\{\gamma_{n}(\mu_x),\,x\in R^m\}$ namely that this process is continuous $P^y_\lambda$ almost surely for all $y\in R^m$, if the corresponding 2$n$-th Wick power chaos process, $\{:G^{2n}\mu_x:,\,x\in R^m\}$ is continuous almost surely. This chaos process is obtained in the following way.A Gaussian process $G_{x,\delta}$ is defined which has covariance $u^1_\delta(x,y)$, where $\lim_{\delta\to 0}u_\delta^1(x,y)=u^1(x,y)$. Then $:G^{2n}\mu_x:\overset\text{def}\to= \lim_{\delta\to 0}\int:G_{y,\delta}^{2n}:\,d\mu_x(y)$ where the limit is taken in $L^2$. ($:G_{y,\delta}^{2n}:$ is the 2$n$-th Wick power of $G_{y,\delta}$, that is, a normalized Hermite polynomial of degree 2$n$ in $G_{y,\delta}$). This process has a natural metric $d(x,y)\overset\text{def}\to= \frac1 {(2n)!}\(E(:G^{2n}\mu_x:-:G^{2n}\mu_y:)^2\)^{1/2} =\(\int\!\! \int \(u^1(u,v)\)^{2n} \left(d(\mu_x(u)-\mu_y(u)) \right) \left(d(\mu_x(v)-\mu_y(v)) \right)\)^{1/2}$. A well known metric entropy condition with respect to $d$ gives a sufficient condition for the continuity of $\{:G^{2n}\mu_x:,\,x\in R^m\}$ and hence for $\{\gamma_{n}(\mu_x),\,x\in R^m\}$.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Sufficient conditions are obtained for the continuity of renormalized self-intersection local times for the multiple intersections of a large class of strongly symmetric Levy processes in $R^m$, $m=1,2$. In $R^2$ these include Brownian motion and stable processes of index greater than 3/2, as well as many processes in their domains of attraction. In $R^1$ these include stable processes of index $3/4<\beta\le 1$ and many processes in their domains of attraction.Let $(\Omega, \mathcal F(t),X(t), P^{x})$ be one of these radially symmetric Levy processes with 1-potential density $u^1(x,y)$. Let $\mathcal G^{2n}$ denote the class of positive finite measures $\mu$ on $R^m$ for which $\int\!\!\int (u^1(x,y))^{2n}\,d\mu(x)\,d\mu(y)<\infty$. For $\mu\in\mathcal G^{2n}$, let $\alpha_{n,\epsilon}(\mu,\lambda) \overset\text{def}\to=\int\!\!\int_{\{0\leq t_1\leq \cdots \leq t_n\leq \lambda\}} f_{\epsilon}(X(t_1)-x)\prod_{j=2}^n f_{\epsilon}(X(t_j)- X(t_{j-1}))\,dt_1\cdots\,dt_n\,d\mu(x)$ where $f_{\epsilon}$ is an approximate $\delta-$function at zero and $\lambda$ is an random exponential time, with mean one, independent of $X$, with probability measure $P_\lambda$.The renormalized self-intersection local time of $X$ with respect to the measure $\mu$ is defined as $\gamma_{n}(\mu)=\lim_{\epsilon\to 0}\,\sum_{k=0}^{n-1}(-1)^{k} {n-1 \choose k}(u^1_{\epsilon}(0))^{k} \alpha_{n-k,\epsilon}(\mu,\lambda)$ where $u^1_{\epsilon}(x)\overset\text{def}\to= \int f_{\epsilon}(x-y)u^1(y)\,dy$, with $u^1(x)\overset\text{def} \to= u^1(x+z,z)$ for all $z\in R^m$. Conditions are obtained under which this limit exists in $L^2(\Omega\times R^+,P^y_\lambda)$ for all $y\in R^m$, where $P^y_\lambda\overset\text{def}\to= P^y\times P_\lambda$. Let $\{\mu_x,x\in R^m\}$ denote the set of translates of the measure $\mu$.The main result in this paper is a sufficient condition for the continuity of $\{\gamma_{n}(\mu_x),\,x\in R^m\}$ namely that this process is continuous $P^y_\lambda$ almost surely for all $y\in R^m$, if the corresponding 2$n$-th Wick power chaos process, $\{:G^{2n}\mu_x:,\,x\in R^m\}$ is continuous almost surely. This chaos process is obtained in the following way.A Gaussian process $G_{x,\delta}$ is defined which has covariance $u^1_\delta(x,y)$, where $\lim_{\delta\to 0}u_\delta^1(x,y)=u^1(x,y)$. Then $:G^{2n}\mu_x:\overset\text{def}\to= \lim_{\delta\to 0}\int:G_{y,\delta}^{2n}:\,d\mu_x(y)$ where the limit is taken in $L^2$. ($:G_{y,\delta}^{2n}:$ is the 2$n$-th Wick power of $G_{y,\delta}$, that is, a normalized Hermite polynomial of degree 2$n$ in $G_{y,\delta}$). This process has a natural metric $d(x,y)\overset\text{def}\to= \frac1 {(2n)!}\(E(:G^{2n}\mu_x:-:G^{2n}\mu_y:)^2\)^{1/2} =\(\int\!\! \int \(u^1(u,v)\)^{2n} \left(d(\mu_x(u)-\mu_y(u)) \right) \left(d(\mu_x(v)-\mu_y(v)) \right)\)^{1/2}$. A well known metric entropy condition with respect to $d$ gives a sufficient condition for the continuity of $\{:G^{2n}\mu_x:,\,x\in R^m\}$ and hence for $\{\gamma_{n}(\mu_x),\,x\in R^m\}$.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Ehem. Bibliotheksexemplar mit Signatur...
Diesen Artikel anzeigen

EUR 16,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Memoirs Of The American Mathematical Society, Number...

Foto des Verkäufers

Marcus, Michael B.; Rosen, Jay
ISBN 10: 0821813404 ISBN 13: 9780821813409
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00891 9780821813409 Sprache: Englisch Gewicht in Gramm: 150. Bestandsnummer des Verkäufers 2484731

Verkäufer kontaktieren

Gebraucht kaufen

EUR 8,84
Währung umrechnen
Versand: EUR 16,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb