Verwandte Artikel zu The Random Projection Method: No. 65 (DIMACS: Series...

The Random Projection Method: No. 65 (DIMACS: Series in Discrete Mathematics and Theoretical Computer Science) - Hardcover

 
9780821820186: The Random Projection Method: No. 65 (DIMACS: Series in Discrete Mathematics and Theoretical Computer Science)

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neighbor search, geometric clustering and efficient low-rank approximation. Motivated by the first two applications, an extension of random projection to the hypercube is developed here. Throughout the book, random projection is used as a way to understand, simplify and connect progress on these important and seemin The book is suitable for graduate students and research mathematicians interested in computational geometry.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neighbor search, geometric clustering and efficient low-rank approximation. Motivated by the first two applications, an extension of random projection to the hypercube is developed here. Throughout the book, random projection is used as a way to understand, simplify and connect progress on these important and seemin The book is suitable for graduate students and research mathematicians interested in computational geometry.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780821837931: The Random Projection Method (DIMACS: Series in Discrete Mathematics and Theoretical Computer Science)

Vorgestellte Ausgabe

ISBN 10:  0821837931 ISBN 13:  9780821837931
Verlag: American Mathematical Society, 2005
Softcover