Verwandte Artikel zu Introduction to Quantum Groups and Crystal Bases (Graduate...

Introduction to Quantum Groups and Crystal Bases (Graduate Studies in Mathematics) - Hardcover

 
9780821828748: Introduction to Quantum Groups and Crystal Bases (Graduate Studies in Mathematics)

Inhaltsangabe

The notion of a 'quantum group' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of 'crystal bases' or 'canonical bases' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups.The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The notion of a "quantum group" was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C*$-algebras. In particular, the theory of "crystal bases" or "canonical bases" developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory. The authors start with the basic theory of quantum groups and their representations, and then give a detailed exposition of the fundamental features of crystal basis theory. They also discuss its applications to the representation theory of classical Lie algebras and quantum affine algebras, solvable lattice model theory, and combinatorics of Young walls.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 11,56 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Introduction to Quantum Groups and Crystal Bases (Graduate...

Beispielbild für diese ISBN

Jin Hong/ Seok-Jin Kang
ISBN 10: 0821828746 ISBN 13: 9780821828748
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. illustrated edition. 307 pages. 10.75x7.25x1.00 inches. In Stock. Bestandsnummer des Verkäufers __0821828746

Verkäufer kontaktieren

Neu kaufen

EUR 103,58
Währung umrechnen
Versand: EUR 11,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb