Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series) - Softcover

Ruelle, David

 
9780821836019: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series)

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\mathbb C}$. The formal power series $\zeta (z) = \exp \sum ^\infty_{m=1} \frac {z^m} {m} \sum_{x \in \mathrm {Fix}\,f^m} \prod ^{m-1}_{k=0} g (f^kx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\mathbb C $. The formal power series $\zeta (z) = \exp \sum infty {m=1 \frac {zm {m \sum {x \in \mathrm {Fix \,fm \prod {m-1 {k=0 g (fkx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9780821869918: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval: No. 4 (CRM Monograph Series)

Vorgestellte Ausgabe

ISBN 10:  0821869914 ISBN 13:  9780821869918
Verlag: American Mathematical Society, 1994
Hardcover