Verwandte Artikel zu The Hilbert Function of a Level Algebra (Memoirs of...

The Hilbert Function of a Level Algebra (Memoirs of the American Mathematical Society) - Softcover

 
9780821839409: The Hilbert Function of a Level Algebra (Memoirs of the American Mathematical Society)

Inhaltsangabe

Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Ex-library in GOOD condition with...
Diesen Artikel anzeigen

EUR 16,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für The Hilbert Function of a Level Algebra (Memoirs of...

Foto des Verkäufers

Anthony V. Geramita; Tadahito Harima; Juan C. Migliore; Yong Su Shin
Verlag: Providence, AMS, 2007
ISBN 10: 0821839403 ISBN 13: 9780821839409
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00072 9780821839409 Sprache: Englisch Gewicht in Gramm: 350. Bestandsnummer des Verkäufers 2482571

Verkäufer kontaktieren

Gebraucht kaufen

EUR 24,50
Währung umrechnen
Versand: EUR 16,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb