In this monograph the author develops the spectral theory for an $n$th order two-point differential operator $L$ in the Hilbert space $L2[0,1]$, where $L$ is determined by an $n$th order formal differential operator $\ell$ having variable coefficients and by $n$ linearly independent boundary values $B 1, \ldots, B n$. Using the Birkhoff approximate solutions of the differential equation $(\rhon I - \ell)u = 0$, the differential operator $L$ is classified as belonging to one of three possible classes: regular, simply irregular, or degenerate irregular. For the regular and simply irregular classes, the author develops asymptotic expansions of solutions of the differential equation $(\rhon I - \ell)u = 0$, constructs the characteristic determinant and Green's function, characterizes the eigenvalues and the corresponding algebraic multiplicities and ascents, and shows that the generalized eigenfunctions of $L$ are complete in $L2[0,1]$. He also gives examples of degenerate irregular differential operators illustrating some of the unusual features of this class.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this monograph the author develops the spectral theory for an $n$th order two-point differential operator $L$ in the Hilbert space $L2[0,1]$, where $L$ is determined by an $n$th order formal differential operator $\ell$ having variable coefficients and by $n$ linearly independent boundary values $B 1, \ldots, B n$. Using the Birkhoff approximate solutions of the differential equation $(\rhon I - \ell)u = 0$, the differential operator $L$ is classified as belonging to one of three possible classes: regular, simply irregular, or degenerate irregular. For the regular and simply irregular classes, the author develops asymptotic expansions of solutions of the differential equation $(\rhon I - \ell)u = 0$, constructs the characteristic determinant and Green's function, characterizes the eigenvalues and the corresponding algebraic multiplicities and ascents, and shows that the generalized eigenfunctions of $L$ are complete in $L2[0,1]$. He also gives examples of degenerate irregular differential operators illustrating some of the unusual features of this class.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00315 9780821841716 Sprache: Englisch Gewicht in Gramm: 150. Bestandsnummer des Verkäufers 2482824
Anzahl: 1 verfügbar