Verwandte Artikel zu Topics in Harmonic Analysis and Ergodic Theory: December...

Topics in Harmonic Analysis and Ergodic Theory: December 2-4, 2005 Depaul University, Chicago, Illinois (Contemporary Mathematics) - Softcover

 
9780821842355: Topics in Harmonic Analysis and Ergodic Theory: December 2-4, 2005 Depaul University, Chicago, Illinois (Contemporary Mathematics)

Inhaltsangabe

There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. The breakthrough achieved by Tao and Green is attributed to applications of techniques from ergodic theory and harmonic analysis to problems in number theory. Articles in the present volume are based on talks delivered by plenary speakers at a conference on Harmonic Analysis and Ergodic Theory (DePaul University, Chicago, December 2-4, 2005). Of ten articles, four are devoted to ergodic theory and six to harmonic analysis, although some may fall in either category. The articles are grouped in two parts arranged by topics. Among the topics are ergodic averages, central limit theorems for random walks, Borel foliations, ergodic theory and low pass filters, data fitting using smooth surfaces, Nehari's theorem for a polydisk, uniqueness theorems for multi-dimensional trigonometric series, and Bellman and $s$-functions.In addition to articles on current research topics in harmonic analysis and ergodic theory, this book contains survey articles on convergence problems in ergodic theory and uniqueness problems on multi-dimensional trigonometric series.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. The breakthrough achieved by Tao and Green is attributed to applications of techniques from ergodic theory and harmonic analysis to problems in number theory. Articles in the present volume are based on talks delivered by plenary speakers at a conference on Harmonic Analysis and Ergodic Theory (DePaul University, Chicago, December 2-4, 2005). Of ten articles, four are devoted to ergodic theory and six to harmonic analysis, although some may fall in either category. The articles are grouped in two parts arranged by topics. Among the topics are ergodic averages, central limit theorems for random walks, Borel foliations, ergodic theory and low pass filters, data fitting using smooth surfaces, Nehari's theorem for a polydisk, uniqueness theorems for multi-dimensional trigonometric series, and Bellman and $s$-functions. In addition to articles on current research topics in harmonic analysis and ergodic theory, this book contains survey articles on convergence problems in ergodic theory and uniqueness problems on multi-dimensional trigonometric series.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Very Good
Diesen Artikel anzeigen

EUR 29,67 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Topics in Harmonic Analysis and Ergodic Theory: December...

Beispielbild für diese ISBN

ISBN 10: 0821842358 ISBN 13: 9780821842355
Gebraucht paperback

Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Very Good. book. Bestandsnummer des Verkäufers D8S0-3-M-0821842358-4

Verkäufer kontaktieren

Gebraucht kaufen

EUR 179,96
Währung umrechnen
Versand: EUR 29,67
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb