Can we be absolutely sure that a polynomial vector field on the real plane has a finite number of limit cycles? Yes, one proof involves the theory of Dulac, going out into the complex domain, the resolution of singularities, the geometric theory of normal forms, and the superexact asymptotic series. No index. Translated from the Russian. Annotation copyright Book News, Inc. Portland, Or.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is devoted to the following finiteness theorem: A polynomial vector field on the real plane has a finite number of limit cycles. To prove the theorem, it suffices to note that limit cycles cannot accumulate on a polycycle of an analytic vector field. This approach necessitates investigation of the monodromy transformation (also known as the Poincare return mapping or the first return mapping) corresponding to this cycle. To carry out this investigation, this book utilizes five sources: The theory of Dulac, use of the complex domain, resolution of singularities, the geometric theory of normal forms, and superexact asymptotic series. In the introduction, the author presents results about this problem that were known up to the writing of the present book, with full proofs (except in the case of the results in the local theory and theorems on resolution of singularities).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 21,36 für den Versand von Kanada nach Deutschland
Versandziele, Kosten & DauerAnbieter: Attic Books (ABAC, ILAB), London, ON, Kanada
Hardcover. Zustand: ex library-good. Transitions of Mathematical Monographs Vol. 94. ix, 288 p. 26 cm. Ex library wth labels on spine and rear pastedown, ink stamp on rear endpaper, top edge. Bestandsnummer des Verkäufers 146840
Anzahl: 1 verfügbar
Anbieter: Reader's Corner, Inc., Raleigh, NC, USA
Cloth. Zustand: Fine. No Jacket. First Edition. This is a fine hardcover first edition copy, no DJ, maroon spine. Bestandsnummer des Verkäufers 070031
Anzahl: 1 verfügbar