Artificial intelligence is dramatically reshaping scientific research and is coming to play an essential role in scientific and technological development by enhancing and accelerating discovery across multiple fields. This book dives into the interplay between artificial intelligence and the quantum sciences; the outcome of a collaborative effort from world-leading experts. After presenting the key concepts and foundations of machine learning, a subfield of artificial intelligence, its applications in quantum chemistry and physics are presented in an accessible way, enabling readers to engage with emerging literature on machine learning in science. By examining its state-of-the-art applications, readers will discover how machine learning is being applied within their own field and appreciate its broader impact on science and technology. This book is accessible to undergraduates and more advanced readers from physics, chemistry, engineering, and computer science. Online resources include Jupyter notebooks to expand and develop upon key topics introduced in the book.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anna Dawid is a research fellow at the Flatiron Institute, New York, with the Ph.D. in quantum physics awarded by the University of Warsaw and ICFO, Barcelona. Her research spans interpretable machine learning for scientific discovery, quantum simulations, and foundations of deep learning.
Alexandre Dauphin is VP quantum simulation at PASQAL, a neutral-atom quantum computing company. During his career, he has worked on a broad range of topics going from quantum simulation of many-body phases of matter to ML applied to physics and QML. He received the NJP early career award 2019, has been a member of the editorial board of NJP since 2020, and a member of ELLIS since 2021.
Julian Arnold is a theoretical physicist working at the interface between the quantum sciences, information theory, and machine learning. His research includes the design of methods for the automated detection of phase transitions and the application of differentiable programming to solve inverse design problems in quantum many-body physics.
Borja Requena develops machine learning algorithms for scientific applications. His contributions span multiple fields, from quantum to statistical and biophysics. Additionally, Borja has worked in high-tech companies such as Xanadu Quantum Technologies or Telefonica R&D, and he has been high ranked in machine learning and quantum computing competitions.
Alexander Gresch (Ph.D. Student at the universities of Düsseldorf and Hamburg) is a theoretical physicist specializing in mathematical and machine learning methods in the context of quantum technologies. This includes, in particular, the efficient and accurate read-out of hybrid quantum algorithms and the role of quantum data for machine learning.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 49380896-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Artificial intelligence is dramatically reshaping scientific research and is coming to play an essential role in scientific and technological development by enhancing and accelerating discovery across multiple fields. This book dives into the interplay between artificial intelligence and the quantum sciences; the outcome of a collaborative effort from world-leading experts. After presenting the key concepts and foundations of machine learning, a subfield of artificial intelligence, its applications in quantum chemistry and physics are presented in an accessible way, enabling readers to engage with emerging literature on machine learning in science. By examining its state-of-the-art applications, readers will discover how machine learning is being applied within their own field and appreciate its broader impact on science and technology. This book is accessible to undergraduates and more advanced readers from physics, chemistry, engineering, and computer science. Online resources include Jupyter notebooks to expand and develop upon key topics introduced in the book. This book provides an accessible introduction to machine learning and demonstrates its applications in the quantum sciences. Readers will be equipped with the necessary tools to engage with emerging literature on machine learning in science and will develop an understanding of its broader impact on science and technology. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781009504935
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781009504935
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781009504935
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49380896
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 330 pages. 7.00x0.75x10.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1009504932
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781009504935_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 49380896-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2025. hardcover. . . . . . Bestandsnummer des Verkäufers V9781009504935
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49380896
Anzahl: Mehr als 20 verfügbar