Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework.
The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems.
The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Piotr Kokoszka is a professor of statistics at Colorado State University. His research interests include functional data analysis, with emphasis on dependent data structures, and applications to geosciences and finance. He is a coauthor of the monograph Inference for Functional Data with Applications (with L. Horváth). He is an associate editor of several journals, including Computational Statistics and Data Analysis, Journal of Multivariate Analysis, Journal of Time Series Analysis, and Scandinavian Journal of Statistics.
Matthew Reimherr is an assistant professor of statistics at Pennsylvania State University. His research interests include functional data analysis, with emphasis on longitudinal studies and applications to genetics and public health. He is an associate editor of Statistical Modeling.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,83 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 185. Bestandsnummer des Verkäufers B9781032096599
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Piotr Kokoszka is a professor of statistics at Colorado State University. His research interests include functional data analysis, with emphasis on dependent data structures, and applications to geosciences and finance. He is a coauthor . Bestandsnummer des Verkäufers 487065271
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 379178555
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18384725486
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 302 pages. 9.25x6.25x0.50 inches. In Stock. Bestandsnummer des Verkäufers __1032096594
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26384725476
Anzahl: 3 verfügbar