Parallel and High-Performance Computing in Artificial Intelligence explores high-performance architectures for data-intensive applications as well as efficient analytical strategies to speed up data processing and applications in automation, machine learning, deep learning, healthcare, bioinformatics, natural language processing (NLP), and vision intelligence.
The book’s two major themes are high-performance computing (HPC) architecture and techniques and their application in artificial intelligence. Highlights include:
Coverage of HPC architecture and techniques includes multicore architectures, parallel-computing techniques, and APIs, as well as dependence analysis for parallel computing. The book also covers hardware acceleration techniques, including those for GPU acceleration to power big data systems.
As AI is increasingly being integrated into HPC applications, the book explores emerging and practical applications in such domains as healthcare, agriculture, bioinformatics, and industrial automation. It illustrates technologies and methodologies to boost the velocity and scale of AI analysis for fast discovery. Data scientists and researchers can benefit from the book’s discussion on AI-based HPC applications that can process higher volumes of data, provide more realistic simulations, and guide more accurate predictions. The book also focuses on deep learning and edge computing methodologies with HPC and presents recent research on methodologies and applications of HPC in AI.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. M. M. Raghuwanshi is the Dean of Engineering at S.B.Jain Institute of Technology Management and Research, Nagpur, India.
Dr. Pradnya Borkar is an Associate Professor at the Department of Computer Science and Engineering and R&D Cell Incharge, Jhulelal Institute of Technology, Nagpur.
Dr. Rutvij H. Jhaveri is an experienced researcher working in the Department of Computer Science & Engineering, Pandit Deendayal Energy University (PDEU/PDPU), Gandhinagar, India since Dec. 2019.
Dr. Roshani Raut is an as Associate Professor in the Department of Information Technology and Associate Dean International Relations, in Pimpri Chinchwad College of Engineering, Pune, India.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,55 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. M. M. Raghuwanshi is the Dean of Engineering at S.B.Jain Institute of Technology Management and Research, Nagpur, India.Dr. Pradnya Borkar is an Associate Professor at the Department of Computer Science and Engineering and R&. Bestandsnummer des Verkäufers 1939522158
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48821804
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48821804
Anzahl: 10 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - The book explores high-performance architectures for data-intensive applications, as well as efficient analytical strategies, to speed up data processing in applications in automation, machine learning, deep learning, bioinformatics, natural language processing, and vision intelligence. Bestandsnummer des Verkäufers 9781032540870
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781032540870
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781032540870_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 336 pages. 9.18x6.12 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1032540877
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 48821804-n
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 48821804-n
Anzahl: 10 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. Parallel and High-Performance Computing in Artificial Intelligence explores high-performance architectures for data-intensive applications as well as efficient analytical strategies to speed up data processing and applications in automation, machine learning, deep learning, healthcare, bioinformatics, natural language processing (NLP), and vision intelligence.The books two major themes are high-performance computing (HPC) architecture and techniques and their application in artificial intelligence. Highlights include:HPC use cases, application programming interfaces (APIs), and applicationsParallelization techniquesHPC for machine learningImplementation of parallel computing with AI in big data analyticsHPC with AI in healthcare systemsAI in industrial automationCoverage of HPC architecture and techniques includes multicore architectures, parallel-computing techniques, and APIs, as well as dependence analysis for parallel computing. The book also covers hardware acceleration techniques, including those for GPU acceleration to power big data systems.As AI is increasingly being integrated into HPC applications, the book explores emerging and practical applications in such domains as healthcare, agriculture, bioinformatics, and industrial automation. It illustrates technologies and methodologies to boost the velocity and scale of AI analysis for fast discovery. Data scientists and researchers can benefit from the books discussion on AI-based HPC applications that can process higher volumes of data, provide more realistic simulations, and guide more accurate predictions. The book also focuses on deep learning and edge computing methodologies with HPC and presents recent research on methodologies and applications of HPC in AI. The book explores high-performance architectures for data-intensive applications, as well as efficient analytical strategies, to speed up data processing in applications in automation, machine learning, deep learning, bioinformatics, natural language processing, and vision intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781032540870
Anzahl: 1 verfügbar