Verwandte Artikel zu Video Based Machine Learning for Traffic Intersections

Video Based Machine Learning for Traffic Intersections - Softcover

 
9781032565170: Video Based Machine Learning for Traffic Intersections

Inhaltsangabe

Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions.

The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection.

Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development.

Key Features:

  • Describes the development and challenges associated with Intelligent Transportation Systems (ITS)
  • Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersection
  • Has the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Tania Banerjee, PhD, is a research assistant scientist in Computer and Information Science and Engineering at the University of Florida. She earned her PhD in Computer Science from the University of Florida in 2012. She completed her MSc in Mathematics from the Indian Institute of Technology, Kharagpur. Her research interests are video analytics, intelligent transportation, data compression, and high performance computing.

Xiaohui Huang, PhD, earned her PhD in the Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida, in December, 2020. Her research interests include machine learning, computer vision, and intelligent transportation systems.

Aotian Wu is currently a PhD student in the Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida. Her research interests are machine learning, computer vision, and intelligent transportation systems.

Ke Chen is currently a PhD student in the Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida. His research interests are machine learning, computer architecture, operating systems and algorithms, and data structures.

Anand Rangarajan, PhD, is a Professor, Department of CISE, University of Florida. His research interests are machine learning, computer vision, medical and hyperspectral imaging, and the science of consciousness.

Sanjay Ranka, PhD, is a Distinguished Professor in the Department of Computer Information Science and Engineering at University of Florida. His current research interests are high performance computing and big data science with a focus on applications in CFD, healthcare and transportation. He has co-authored four books and 290+ journal and refereed conference articles. He is a Fellow of the IEEE and AAAS. He is an Associate Editor-in-Chief of the Journal of Parallel and Distributed Computing and an Associate Editor for ACM Computing Surveys, Applied Sciences, Applied Intelligence, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 10,16 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781032542263: Video Based Machine Learning for Traffic Intersections

Vorgestellte Ausgabe

ISBN 10:  1032542268 ISBN 13:  9781032542263
Verlag: CRC Press, 2023
Hardcover

Suchergebnisse für Video Based Machine Learning for Traffic Intersections

Beispielbild für diese ISBN

Banerjee, Tania; Huang, Xiaohui; Wu, Aotian; Chen, Ke; Rangarajan, Anand; Ranka, Sanjay
Verlag: CRC Press, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pages cm. Bestandsnummer des Verkäufers 398700316

Verkäufer kontaktieren

Neu kaufen

EUR 67,34
Währung umrechnen
Versand: EUR 10,16
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Banerjee, Tania; Huang, Xiaohui; Wu, Aotian; Chen, Ke; Rangarajan, Anand; Ranka, Sanjay
Verlag: CRC Press, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pages cm. Bestandsnummer des Verkäufers 18397676745

Verkäufer kontaktieren

Neu kaufen

EUR 77,11
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Banerjee, Tania/ Huang, Xiaohui/ Wu, Aotian/ Chen, Ke/ Rangarajan, Anand
Verlag: CRC Pr I Llc, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Paperback
Print-on-Demand

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 194 pages. 9.18x6.12 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1032565179

Verkäufer kontaktieren

Neu kaufen

EUR 68,92
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Banerjee, Tania; Huang, Xiaohui; Wu, Aotian; Chen, Ke; Rangarajan, Anand; Ranka, Sanjay
Verlag: CRC Press, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781032565170

Verkäufer kontaktieren

Neu kaufen

EUR 72,94
Währung umrechnen
Versand: EUR 8,64
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Banerjee, Tania; Huang, Xiaohui; Wu, Aotian; Chen, Ke; Rangarajan, Anand; Ranka, Sanjay
Verlag: CRC Press, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pages cm First Includes bibliographical references and index. Bestandsnummer des Verkäufers 26397676739

Verkäufer kontaktieren

Neu kaufen

EUR 74,13
Währung umrechnen
Versand: EUR 7,77
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Banerjee, Tania/ Huang, Xiaohui/ Wu, Aotian/ Chen, Ke/ Rangarajan, Anand
Verlag: CRC Pr I Llc, 2025
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 194 pages. 9.18x6.12x9.21 inches. In Stock. Bestandsnummer des Verkäufers x-1032565179

Verkäufer kontaktieren

Neu kaufen

EUR 93,41
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tania Banerjee
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Paperback

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions.The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection.Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development.Key Features:Describes the development and challenges associated with Intelligent Transportation Systems (ITS)Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersectionHas the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781032565170

Verkäufer kontaktieren

Neu kaufen

EUR 79,25
Währung umrechnen
Versand: EUR 28,71
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tania Banerjee
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Paperback

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions.The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection.Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development.Key Features:Describes the development and challenges associated with Intelligent Transportation Systems (ITS)Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersectionHas the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9781032565170

Verkäufer kontaktieren

Neu kaufen

EUR 81,50
Währung umrechnen
Versand: EUR 31,95
Von Australien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tania Banerjee
ISBN 10: 1032565179 ISBN 13: 9781032565170
Neu Paperback

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions.The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection.Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development.Key Features:Describes the development and challenges associated with Intelligent Transportation Systems (ITS)Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersectionHas the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781032565170

Verkäufer kontaktieren

Neu kaufen

EUR 72,94
Währung umrechnen
Versand: EUR 64,77
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb