This detailed volume presents a comprehensive exploration of the advances in transcriptomics, with a focus on methods and pipelines for transcriptome data analysis. In addition to well-established RNA sequencing (RNA-Seq) data analysis protocols, the chapters also examine specialized pipelines, such as multi-omics data integration and analysis, gene interaction network construction, single-cell trajectory inference, detection of structural variants, application of machine learning, and more. As part of the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that leads to best results in the lab.
Authoritative and practical, Transcriptome Data Analysis serves as an ideal resource for educators and researchers looking to understand new developments in the field, learn usage of the protocols for transcriptome data analysis, and implement the tools or pipelines to address relevant problemsof their interest.
Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This detailed volume presents a comprehensive exploration of the advances in transcriptomics, with a focus on methods and pipelines for transcriptome data analysis. In addition to well-established RNA sequencing (RNA-Seq) data analysis protocols, the chapters also examine specialized pipelines, such as multi-omics data integration and analysis, gene interaction network construction, single-cell trajectory inference, detection of structural variants, application of machine learning, and more. As part of the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that leads to best results in the lab.
Authoritative and practical, Transcriptome Data Analysis serves as an ideal resource for educators and researchers looking to understand new developments in the field, learn usage of the protocols for transcriptome data analysis, and implement the tools or pipelines to address relevant problemsof their interest.
Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This detailed volume presents a comprehensive exploration of the advances in transcriptomics, with a focus on methods and pipelines for transcriptome data analysis. In addition to well-established RNA sequencing (RNA-Seq) data analysis protocols, the cha. Bestandsnummer des Verkäufers 1429714366
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 395 pp. Englisch. Bestandsnummer des Verkäufers 9781071638859
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Transcriptome Data Analysis | Rajeev K. Azad | Buch | xi | Englisch | 2024 | Springer US | EAN 9781071638859 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 128697584
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 408 pp. Englisch. Bestandsnummer des Verkäufers 9781071638859
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering. Bestandsnummer des Verkäufers 9781071638859
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 375 pages. 10.00x7.00x10.00 inches. In Stock. Bestandsnummer des Verkäufers x-1071638858
Anzahl: 2 verfügbar