* Updated in August, 2019 with color printing!
* Research fields: Computer Vision and Machine Learning.
* Book Topic: Action recognition from videos.
* Recognition Tool: Recurrent Neural Network (RNN) with LSTM (Long-Short Term Memory) layer and fully connected layer.
* Programming Language: Step-by-step implementation with Python in Jupyter Notebook.
* Major Steps: Building a network, training the network, testing the network, comparing the network with an SVM (Support Vector Machines) classifier.
* Processing Units to Execute the Codes: CPU and GPU (on Google Colaboratory).
* Image Feature Extraction Tool: Pretrained VGG16 network.
* Dataset: UCF101 (the first 15 actions, 2010 videos).
* Main Results: For the testing data, the highest prediction accuracy from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%).
* Detailed Description:
Recurrent Neural Network (RNN) is a great tool to do video action recognition. This book built an RNN with an LSTM (Long-Short Term Memory) layer and a fully connected layer to do video action recognition.
The RNN was trained and evaluated with VGG16 Features that were saved in .mat files; the features were extracted from images with a modified pretrained VGG16 network; the images were converted from videos in the UCF101 dataset, which has 101 different actions including 13,320 videos; please notice that only the first 15 actions in this dataset were used to do the recognition.
The codes were implemented step-by-step with Python in Jupyter Notebook, and they could be executed on both CPUs and GPUs; free GPUs on Google Colaboratory were used as hardware accelerator to do most of the calculations.
For the purpose of getting a higher testing accuracy, the architecture of the network was regulated, and parameters of the network and its optimizer were fine-tuned.
For comparison purpose only, an SVM (Support Vector Machines) classifier was trained and tested.
For the first 15 actions in the UCF101 dataset, the highest prediction accuracy of the testing data from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%).
In conclusion, the performances of the RNN and the SVM classifier are approximately the same for the task in this book, which is a little embarrassed. However, RNN does have its own advantages in many other cases in the fields of Computer Vision and Machine Learning, and the implementation in this book can be an introduction to this topic in order to throw out a minnow to catch a whale.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,04 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 8,52 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: California Books, Miami, FL, USA
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9781086884470
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 38117543-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781086884470
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38117543
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 352. Bestandsnummer des Verkäufers C9781086884470
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781086884470_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware. Bestandsnummer des Verkäufers 9781086884470
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781086884470
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781086884470
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38117543
Anzahl: Mehr als 20 verfügbar