This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.
Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.
You'll learn how to:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google Cloud, where he leads a team building cross-industry solutions to business problems. His mission is to democratize machine learning so that it can be done by anyone anywhere.
Martin Görner is a product manager for Keras/TensorFlow focused on improving the developer experience when using state-of-the-art models. He's passionate about science, technology, coding, algorithms, and everything in between.
Ryan Gillard is an AI engineer in Google Cloud's Professional Services organization, where he builds ML models for a wide variety of industries. He started his career as a research scientist in the hospital and healthcare industry. With degrees in neuroscience and physics, he loves working at the intersection of those disciplines exploring intelligence through mathematics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Pages intact with minimal writing/highlighting. The binding may be loose and creased. Dust jackets/supplements are not included. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. Bestandsnummer des Verkäufers 55183901-6
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 42834304-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images. Book. Bestandsnummer des Verkäufers BBS-9781098102364
Anbieter: Lakeside Books, Benton Harbor, MI, USA
Zustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Bestandsnummer des Verkäufers OTF-S-9781098102364
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 42834304
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.Google engineers Valliappa Lakshmanan, Martin Goerner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.You'll learn how to:Design ML architecture for computer vision tasksSelect a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your taskCreate an end-to-end ML pipeline to train, evaluate, deploy, and explain your modelPreprocess images for data augmentation and to support learnabilityIncorporate explainability and responsible AI best practicesDeploy image models as web services or on edge devicesMonitor and manage ML models. Bestandsnummer des Verkäufers LU-9781098102364
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530257110
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098102364
Anzahl: 15 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781098102364
Anzahl: Mehr als 20 verfügbar
Anbieter: Mooney's bookstore, Den Helder, Niederlande
Zustand: Very good. Bestandsnummer des Verkäufers E-9781098102364-6-2
Anzahl: 1 verfügbar