The past decade has witnessed the broad adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight in their widespread implementation has resulted in some incidents and harmful outcomes that could have been avoided with proper risk management. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks.
This book describes approaches to responsible AI--a holistic framework for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science. Authors Patrick Hall, James Curtis, and Parul Pandey created this guide for data scientists who want to improve real-world AI/ML system outcomes for organizations, consumers, and the public.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Patrick Hall is principal scientist at bnh.ai, a Cc.C.-based law firm focused on AI and data analytics, and visiting faculty at the George Washington University School of Business (GWSB). James Curtis is a quantitative researcher focused on US power markets and renewable resource asset management. Parul Pandey is a Machine Learning Engineer at Weights & Biases.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 3,43 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 52751944-75
Anzahl: 1 verfügbar
Anbieter: World of Books (was SecondSale), Montgomery, IL, USA
Zustand: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00084349039
Anzahl: 1 verfügbar
Anbieter: World of Books (was SecondSale), Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00091075682
Anzahl: 1 verfügbar
Anbieter: Lakeside Books, Benton Harbor, MI, USA
Zustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Bestandsnummer des Verkäufers OTF-S-9781098102432
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44652269-n
Anzahl: 18 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098102432
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44652269
Anzahl: 18 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098102432
Anzahl: 4 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781098102432
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Bestandsnummer des Verkäufers LU-9781098102432
Anzahl: Mehr als 20 verfügbar