Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.
Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building robust graph learning systems in a world of dynamic and evolving graphs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ahmed Menshawy is the Vice President of AI Engineering at Mastercard's Cyber and Intelligence. In this role, he leads the AI Engineering team, driving the development and operationalization of AI products and addressing the broad range of challenges and technical debts surrounding ML pipelines. Ahmed also leads a team dedicated to creating a number of AI accelerators and capabilities, including Serving engines and Feature stores, aimed at enhancing various aspects of AI engineering. Ahmed is the coauthor of Deep Learning with TensorFlow and the author of Deep Learning by Example, focusing on advanced topics in deep learning. Sameh is an expert in machine learning and health informatics. He has more than a decade of both academic and industrial experience in machine learning and artificial intelligence solutions. He obtained his PhD from the University of Galway, where he did research on machine learning on graphs and its applications in biomedical applications and a master's degree in cardiovascular intervention medicine. He later worked for Mastercard, Carelon, and Microsoft in technical leadership roles where he built machine learning powered solutions in the domains of finance, healthcare insurance, and content generation. His contributions are mainly focused on the topics of representation learning, natural language processing, and health informatics. Maraim Rizk Masoud is a leading machine learning engineer at Mastercard's Cyber and Intelligence division, concurrently serving as an AI researcher. With a diverse background spanning both industry and academia, Maraim has delved into various AI domains, including natural language processing and AI governance. She holds an MSc in Machine Learning from Imperial College London and an MEng from the University of Southampton.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 49820192-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Scaling Graph Learning for the Enterprise: Production-Ready Graph Learning and Inference 1.29. Book. Bestandsnummer des Verkäufers BBS-9781098146061
Anzahl: 5 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781098146061
Anzahl: 4 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098146061
Anzahl: 15 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49820192
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098146061
Anzahl: 15 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781098146061
Anzahl: Mehr als 20 verfügbar
Anbieter: CreativeCenters, Peoria, IL, USA
paperback. Zustand: New. Bestandsnummer des Verkäufers 9781098146061
Anzahl: 1 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Bestandsnummer des Verkäufers QDZQLWBULH
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781098146061
Anzahl: 1 verfügbar