AI has acquired startling new language capabilities in just the past few years. Driven by rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend is enabling new features, products, and entire industries. Through this book's visually educational nature, readers will learn practical tools and concepts they need to use these capabilities today.
You'll understand how to use pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; and use existing libraries and pretrained models for text classification, search, and clusterings.
This book also helps you:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jay Alammar is Director and Engineering Fellow at Cohere (pioneering provider of large language models as an API). In this role, he advises and educates enterprises and the developer community on using language models for practical use cases). Through his popular AI/ML blog, Jay has helped millions of researchers and engineers visually understand machine learning tools and concepts from the basic (ending up in the documentation of packages like NumPy and pandas) to the cutting-edge (Transformers, BERT, GPT-3, Stable Diffusion). Jay is also a co-creator of popular machine learning and natural language processing courses on Deeplearning.ai and Udacity.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,08 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,67 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098150969
Anzahl: 15 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781098150969
Anzahl: 5 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781098150969_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2024. 1st Edition. paperback. . . . . . Bestandsnummer des Verkäufers V9781098150969
Anzahl: 6 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47610561-n
Anzahl: 16 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781098150969
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 740. Bestandsnummer des Verkäufers C9781098150969
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today.You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings.This book also shows you how to:Build advanced LLM pipelines to cluster text documents and explore the topics they belong toBuild semantic search engines that go beyond keyword search with methods like dense retrieval and rerankersLearn various use cases where these models can provide valueUnderstand the architecture of underlying Transformer models like BERT and GPTGet a deeper understanding of how LLMs are trainedOptimize LLMs for specific applications with methods such as generative model fine-tuning, contrastive fine-tuning, and in-context learning. Bestandsnummer des Verkäufers LU-9781098150969
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401321945
Anzahl: 3 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 47610561-n
Anzahl: 13 verfügbar