Get up to speed on a new unified approach to building machine learning (ML) systems with batch data, real-time data, and large language models (LLMs) based on independent, modular ML pipelines and a shared data layer. With this practical book, data scientists and ML engineers will learn in detail how to develop, maintain, and operate modular ML systems.
Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Through examples, you'll look at how the feature store helps solve the hardest problem in ML--the data. When building systems, you'll move seamlessly from managing incremental datasets for training and fine-tuning to real-time data access and retrieval-augmented generation for online ML systems.
With this book, you'll be able to:
Jim Dowling is CEO of Hopsworks and an associate professor at KTH Royal Institute of Technology in Stockholm, Sweden.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jim Dowling is CEO of Hopsworks and an Associate Professor at KTH Royal Institute of Technology. He's led the development of Hopsworks that includes the first open-source feature store for machine learning. He has a unique background in the intersection of data and AI. For data, he worked at MySQL and later led the development of HopsFS, a distributed file system that won the IEEE Scale Prize in 2017. For AI, his PhD introduced Collaborative Reinforcement Learning, and he developed and taught the first course on Deep Learning in Sweden in 2016. He also released a popular online course on serverless machine learning using Python at serverless-ml.org. This combined background of Data and AI helped him realize the vision of a feature store for machine learning based on general purpose programming languages, rather than the earlier feature store work at Uber on DSLs. He was the first evangelist for feature stores, helping to create the feature store product category through talks at industry conferences, like Data/AI Summit, PyData, OSDC, and educational articles on feature stores. He is the organizer of the annual feature store summit conference and the featurestore.org community, as well as co-organizer of PyData Stockholm.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 50255538
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781098165239
Anzahl: 15 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 50255538-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Get up to speed on a new unified approach to building machine learning (ML) systems with batch data, real-time data, and large language models (LLMs) based on independent, modular ML pipelines and a shared data layer. With this practical book, data scientists and ML engineers will learn in detail how to develop, maintain, and operate modular ML systems.Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Through examples, you'll look at how the feature store helps solve the hardest problem in ML-the data. When building systems, you'll move seamlessly from managing incremental datasets for training and fine-tuning to real-time data access and retrieval-augmented generation for online ML systems.With this book, you'll be able to:Make the leap from training ML models to building ML systemsDevelop an ML system as modular feature, training, and inference pipelinesDesign, develop, and operate batch ML systems, real-time ML systems, and fine-tuned LLM systems with retrieval-augmented generationLearn the problems a feature store for ML solves when building ML systemsUnderstand the principles of MLOps for developing and safely updating ML systemsJim Dowling is CEO of Hopsworks and an associate professor at KTH Royal Institute of Technology in Stockholm, Sweden. Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781098165239
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781098165239
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Get up to speed on a new unified approach to building machine learning (ML) systems with batch data, real-time data, and large language models (LLMs) based on independent, modular ML pipelines and a shared data layer. With this practical book, data scientists and ML engineers will learn in detail how to develop, maintain, and operate modular ML systems.Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Through examples, you'll look at how the feature store helps solve the hardest problem in ML-the data. When building systems, you'll move seamlessly from managing incremental datasets for training and fine-tuning to real-time data access and retrieval-augmented generation for online ML systems.With this book, you'll be able to:Make the leap from training ML models to building ML systemsDevelop an ML system as modular feature, training, and inference pipelinesDesign, develop, and operate batch ML systems, real-time ML systems, and fine-tuned LLM systems with retrieval-augmented generationLearn the problems a feature store for ML solves when building ML systemsUnderstand the principles of MLOps for developing and safely updating ML systemsJim Dowling is CEO of Hopsworks and an associate professor at KTH Royal Institute of Technology in Stockholm, Sweden. Bestandsnummer des Verkäufers LU-9781098165239
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 50255538-n
Anzahl: 7 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Bestandsnummer des Verkäufers EEWH1EX4VE
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Get up to speed on a new unified approach to building machine learning (ML) systems with batch data, real-time data, and large language models (LLMs) based on independent, modular ML pipelines and a shared data layer. With this practical book, data scientists and ML engineers will learn in detail how to develop, maintain, and operate modular ML systems.Author Jim Dowling introduces fundamental MLOps principles and practices for developing and operating reliable ML systems and describes the key data platform that you'll use to build and operate your ML systems: the feature store. Through examples, you'll look at how the feature store helps solve the hardest problem in ML-the data. When building systems, you'll move seamlessly from managing incremental datasets for training and fine-tuning to real-time data access and retrieval-augmented generation for online ML systems.With this book, you'll be able to:Make the leap from training ML models to building ML systemsDevelop an ML system as modular feature, training, and inference pipelinesDesign, develop, and operate batch ML systems, real-time ML systems, and fine-tuned LLM systems with retrieval-augmented generationLearn the problems a feature store for ML solves when building ML systemsUnderstand the principles of MLOps for developing and safely updating ML systemsJim Dowling is CEO of Hopsworks and an associate professor at KTH Royal Institute of Technology in Stockholm, Sweden. Bestandsnummer des Verkäufers LU-9781098165239
Anzahl: 5 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-GRD-9781098165239
Anzahl: 4 verfügbar