Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Qiang Yang is the Head of AI at WeBank and a Chair Professor of Computer Science and Engineering at Hong Kong University of Science and Technology. He is a fellow of the Association for Computing Machinery (ACM), Association for the Advancement of Artificial Intelligence (AAAI), Institute of Electrical and Electronics Engineers (IEEE), International Association for Pattern Recognition (IAPR) and American Association for the Advancement of Science (AAAS), and has served on the AAAI Executive Council and as President of IJCAI. Awards include the 2004/2005 ACM KDDCUP Championship, the ACM SIGKDD Distinguished Service Award, and AAAI Innovative AI Applications Award. His books include Intelligent Planning (1997), Crafting Your Research Future (2012) and Constraint-based Design Recovery for Software Engineering (1997), and he is Founding EIC of the IEEE Transactions on Intelligent Systems and Technology and on Big Data.
Yu Zhang is a research assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology, where he received his Ph.D. degree. He has published about sixty papers in top-tier AI and Machine Learning conferences and journals. He won the best paper awards at UAI 2010 and Knowledge Discovery and Data Mining (KDD) 2019, and the best student paper award in the 2013 IEEE/WIC/ACM Conference on Web Intelligence.
Wenyuan Dai is the founder and CEO of 4Paradigm Corp. He was a principal architect and senior scientist in Baidu, helping to develop one of China's largest machine learning systems, and a principal scientist in Huawei Noah's Ark Lab. He has published numerous papers at the conferences including the International Conference on Machine Learning (ICML), Neural Information Processing Systems (NIPS), Association for the Advancement of Artificial Intelligence (AAAI), Knowledge Discovery and Data Mining (KDD), and others, primarily on transfer learning and AutoML. He won the ACM-ICPC World Final 2005 and the PKDD best student paper award in 2007, and in 2017 was named as one of the MIT Technical Review 35 under 35 in China and Fortune 40 under 40 in China.
Sinno Jialin Pan is a Provost's Chair Associate Professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore and was formerly Lab Head of text analytics with the Data Analytics Department, Institute for Infocomm Research, Singapore. He received his Ph.D. degree in computer science from the Hong Kong University of Science and Technology in 2011. He was named 'AI 10 to Watch' by IEEE Intelligent Systems magazine in 2018.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,77 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18376612867
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26376612873
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781107016903_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 369432534
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Transfer learning deals with how machine learning and artificial intelligence systems can quickly adapt to new tasks and environments. This in-depth tutorial for students, researchers, and developers covers foundations, plus applications such as text mining. Bestandsnummer des Verkäufers 298712169
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781107016903
Anzahl: Mehr als 20 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00057702249
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 379 pages. 9.00x6.00x0.75 inches. In Stock. Bestandsnummer des Verkäufers __1107016908
Anzahl: 1 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers. Transfer learning deals with how machine learning and artificial intelligence systems can quickly adapt to new tasks and environments. This in-depth tutorial for students, researchers, and developers covers foundations, plus applications such as text mining, inference on social networks, recommendation, multimedia, and cyber-physical systems. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781107016903
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Transfer learning deals with how machine learning and artificial intelligence systems can quickly adapt to new tasks and environments. This in-depth tutorial for students, researchers, and developers covers foundations, plus applications such as text mining, inference on social networks, recommendation, multimedia, and cyber-physical systems. Bestandsnummer des Verkäufers 9781107016903
Anzahl: 1 verfügbar