Verwandte Artikel zu Statistical Methods for Recommender Systems

Statistical Methods for Recommender Systems - Hardcover

 
9781107036079: Statistical Methods for Recommender Systems

Inhaltsangabe

Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorinnen und Autoren

Dr Deepak Agarwal is a big data analyst with more than fifteen years of experience developing and deploying state-of-the-art machine learning and statistical methods for improving the relevance of web applications. He is also experienced in conducting new scientific research to solve notoriously difficult big data problems, especially in the areas of recommender systems and computational advertising. He is a Fellow of the American Statistical Association and associate editor of two top-tier journals in statistics.

Dr Bee-Chung Chen is a Senior Staff Engineer and Applied Researcher at LinkedIn. He has been a key designer of the recommendation algorithms that power LinkedIn homepage and mobile feeds, Yahoo! homepage, Yahoo! News and other sites. Dr Chen is a leading technologist with extensive industrial and research experience. His research areas include recommender systems, machine learning and big data analytics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Connecting readers with great books...
Diesen Artikel anzeigen

EUR 96,98 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,72 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Statistical Methods for Recommender Systems

Beispielbild für diese ISBN

Agarwal, Deepak K.; Chen, Bee-Chung
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781107036079_new

Verkäufer kontaktieren

Neu kaufen

EUR 66,32
Währung umrechnen
Versand: EUR 5,72
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Agarwal, Deepak K.|Chen, Bee-Chung
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life. Bestandsnummer des Verkäufers 118076065

Verkäufer kontaktieren

Neu kaufen

EUR 74,54
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agarwal, Deepak K.; Chen, Bee-Chung
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781107036079

Verkäufer kontaktieren

Neu kaufen

EUR 67,47
Währung umrechnen
Versand: EUR 8,51
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agarwal, Deepak/ Chen, Bee-chung
Verlag: Cambridge Univ Pr, 2016
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover
Print-on-Demand

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1st edition. 298 pages. 9.00x6.00x0.50 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1107036070

Verkäufer kontaktieren

Neu kaufen

EUR 65,40
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Agarwal, Deepak K.; Chen, Bee-chung
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 24905841-n

Verkäufer kontaktieren

Neu kaufen

EUR 60,85
Währung umrechnen
Versand: EUR 17,01
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Deepak K. Agarwal, Bee-Chung Chen
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. Bestandsnummer des Verkäufers LU-9781107036079

Verkäufer kontaktieren

Neu kaufen

EUR 78,44
Währung umrechnen
Versand: EUR 2,30
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Agarwal, Deepak K.; Chen, Bee-chung
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 24905841-n

Verkäufer kontaktieren

Neu kaufen

EUR 66,31
Währung umrechnen
Versand: EUR 17,24
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Deepak K. Agarwal, Bee-Chung Chen
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. Bestandsnummer des Verkäufers LU-9781107036079

Verkäufer kontaktieren

Neu kaufen

EUR 84,42
Währung umrechnen
Versand: EUR 2,30
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Deepak K. Agarwal
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with. Bestandsnummer des Verkäufers 9781107036079

Verkäufer kontaktieren

Neu kaufen

EUR 92,40
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agarwal, Deepak K.
ISBN 10: 1107036070 ISBN 13: 9781107036079
Neu Hardcover

Anbieter: Toscana Books, AUSTIN, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Bestandsnummer des Verkäufers Scanned1107036070

Verkäufer kontaktieren

Neu kaufen

EUR 70,64
Währung umrechnen
Versand: EUR 25,52
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 12 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen