This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Sebastian Reich is Professor of Numerical Analysis at the University of Potsdam (full time) and the University of Reading (part time). He also holds an honorary visiting professorship at Imperial College London. Reich is the author of over 100 journal articles and the co-author of Simulating Hamiltonian Dynamics (Cambridge, 2005), which has received more than 600 citations. His research areas cover numerical analysis and scientific computing with applications to classical mechanics, molecular dynamics, geophysical fluid dynamics, and data assimilation. In 2003 he received the Germund Dahlquist Prize from the Society for Industrial and Applied Mathematics (SIAM) for his work on geometric integration methods.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781107069398_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530265745
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 306 pages. 9.75x7.00x0.75 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1107069394
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781107069398
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas. This book focuses on the Bayesian approach to data assimilation, outlining the subject's key ideas and concepts, and explaining how to implement specific data assimilation algorithms. It is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781107069398
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas. This book focuses on the Bayesian approach to data assimilation, outlining the subject's key ideas and concepts, and explaining how to implement specific data assimilation algorithms. It is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781107069398
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 320 Index. Bestandsnummer des Verkäufers 26145872029
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book focuses on the Bayesian approach to data assimilation, outlining the subject s key ideas and concepts, and explaining how to implement specific data assimilation algorithms. It is an ideal introduction for graduate students in applied mathematics,. Bestandsnummer des Verkäufers 37868457
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 320 77 Illus. (7 Col.). Bestandsnummer des Verkäufers 147221314
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 320. Bestandsnummer des Verkäufers 18145872023
Anzahl: 4 verfügbar