This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat–Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at The John Hopkins University and the editor-in-chief of the American Journal of Mathematics. His research concerns Fourier analysis and partial differential equations. In 2012, he became one of the Inaugural Fellows of the American Mathematical Society. He is also a fellow of the National Science Foundation, the Alfred P. Sloan Foundation and the Guggenheim Foundation, and he is a recipient of the Presidential Young Investigator Award. In 2007, he received the Diversity Recognition Award from The Johns Hopkins University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This advanced monograph, concerned with modern treatments of central problems in harmonic analysis, explores the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. New c. Bestandsnummer des Verkäufers 135913619
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781107120075_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26376285900
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781107120075
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18376285894
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 330 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1107120071
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 741. Bestandsnummer des Verkäufers C9781107120075
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 370808083
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: New. New. book. Bestandsnummer des Verkäufers ERICA80011071200716
Anzahl: 1 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hoermander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff. This advanced monograph, concerned with modern treatments of central problems in harmonic analysis, explores the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. New chapters discuss the Duistermaat-Guillemin theorem and results related to the Kakeya conjecture. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781107120075
Anzahl: 1 verfügbar