An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Roman Vershynin is Professor of Mathematics at the University of California, Irvine. He studies random geometric structures across mathematics and data sciences, in particular in random matrix theory, geometric functional analysis, convex and discrete geometry, geometric combinatorics, high-dimensional statistics, information theory, machine learning, signal processing, and numerical analysis. His honors include an Alfred Sloan Research Fellowship in 2005, an invited talk at the International Congress of Mathematicians in Hyderabad in 2010, and a Bessel Research Award from the Humboldt Foundation in 2013. His 'Introduction to the Non-Asymptotic Analysis of Random Matrices' has become a popular educational resource for many new researchers in probability and data science.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good. Cover and edges may have some wear. Bestandsnummer des Verkäufers mon0003853048
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GO-9781108415194
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 31310712-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 31310712
Anzahl: 1 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Hardback. Zustand: New. High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression. Bestandsnummer des Verkäufers LU-9781108415194
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108415194_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
hardcover. Zustand: New. Bestandsnummer des Verkäufers 6666-GRD-9781108415194
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 31310712-n
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2018. 1st Edition. hardcover. . . . . . Bestandsnummer des Verkäufers V9781108415194
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 31310712
Anzahl: 1 verfügbar