With detailed explanations and numerous examples, this textbook covers the differential geometry of surfaces in Euclidean space.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Lyndon Woodward obtained his D.Phil. from the University of Oxford. They embarked on a long and fruitful collaboration, co-authoring over thirty research papers in differential geometry, particularly on generalisations of 'soap film' surfaces. Between them they have over seventy years teaching experience, being well-regarded as enthusiastic, clear, and popular lecturers. Lyndon Woodward passed away in 2000.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108424936_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 33207938
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 33207938-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 33207938-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 263 pages. 9.75x7.50x0.75 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1108424937
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 815. Bestandsnummer des Verkäufers C9781108424936
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530282719
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 33207938
Anzahl: Mehr als 20 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay of undergraduate mathematics education and a cornerstone of modern geometry. It is also the language used by Einstein to express general relativity, and so is an essential tool for astronomers and theoretical physicists. This introductory textbook originates from a popular course given to third year students at Durham University for over twenty years, first by the late L. M. Woodward and later by John Bolton (and others). It provides a thorough introduction by focusing on the beginnings of the subject as studied by Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential geometry - the definition and geometric meaning of Gaussian curvature, the Theorema Egregium, geodesics, and the GaussBonnet Theorem - the treatment is modern and student-friendly, taking direct routes to explain, prove and apply the main results. It includes many exercises to test students' understanding of the material, and ends with a supplementary chapter on minimal surfaces that could be used as an extension towards advanced courses or as a source of student projects. This textbook covers the classical topics of differential geometry of surfaces as studied by Gauss: the definition and geometric meaning of Gaussian curvature, the Theorema Egregium, geodesics, and the GaussBonnet Theorem. It is suitable for upper-level undergraduates and contains plentiful examples and exercises, with solutions to selected problems. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9781108424936
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26379601332
Anzahl: 4 verfügbar