Fairfield and Charman provide a modern, rigorous and intuitive methodology for case-study research to help social scientists and analysts make better inferences from qualitative evidence. The book develops concrete guidelines for conducting inference to best explanation given incomplete information; no previous exposure to Bayesian analysis or specialized mathematical skills are needed. Topics covered include constructing rival hypotheses that are neither too simple nor overly complex, assessing the inferential weight of evidence, counteracting cognitive biases, selecting cases, and iterating between theory development, data collection, and analysis. Extensive worked examples apply Bayesian guidelines, showcasing both exemplars of intuitive Bayesian reasoning and departures from Bayesian principles in published case studies drawn from process-tracing, comparative, and multimethod research. Beyond improving inference and analytic transparency, an overarching goal of this book is to revalue qualitative research and place it on more equal footing with respect to quantitative and experimental traditions by illustrating that Bayesianism provides a universally applicable inferential framework.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Tasha Fairfield is an Associate Professor at the London School of Economics, with a Ph.D in political science from the University of California, Berkeley, and an M.S. in physics from Stanford University. Her publications include Private Wealth and Public Revenue in Latin America (Cambridge, 2015), which won the Donna Lee Van Cott Book Award.
Andrew E. Charman is a Lecturer and Researcher in Physics at the University of California, Berkeley, and an expert in Bayesian statistics. Beyond analyzing measurements of antimatter and the foundations of quantum mechanics, he has explored methods for optimal congressional apportionment and statistical mechanical models of gerrymandering. His previous work with Tasha Fairfield received APSA's QMMR Sage Paper Award.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less 2.35. Bestandsnummer des Verkäufers G1108433359I2N00
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781108433358
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530283130
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43675921-n
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781108433358
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43675921
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. Fairfield and Charman provide a modern, rigorous and intuitive methodology for case-study research to help social scientists and analysts make better inferences from qualitative evidence. The book develops concrete guidelines for conducting inference to best explanation given incomplete information; no previous exposure to Bayesian analysis or specialized mathematical skills are needed. Topics covered include constructing rival hypotheses that are neither too simple nor overly complex, assessing the inferential weight of evidence, counteracting cognitive biases, selecting cases, and iterating between theory development, data collection, and analysis. Extensive worked examples apply Bayesian guidelines, showcasing both exemplars of intuitive Bayesian reasoning and departures from Bayesian principles in published case studies drawn from process-tracing, comparative, and multimethod research. Beyond improving inference and analytic transparency, an overarching goal of this book is to revalue qualitative research and place it on more equal footing with respect to quantitative and experimental traditions by illustrating that Bayesianism provides a universally applicable inferential framework. Devises a rigorous, intuitive methodology for case-study research, helping social scientists and analysts make better inferences from qualitative evidence. Bayesianism provides guidance for rational reasoning under uncertainty, to make well-justified assessments about how strongly the information in hand supports one explanation over rivals. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781108433358
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108433358_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781108433358
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 43675921-n
Anzahl: Mehr als 20 verfügbar