A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
William W. Hsieh is a Professor in the Department of Earth and Ocean Sciences and in the Department of Physics and Astronomy, as well as Chair of the Atmospheric Science Programme, at the University of British Columbia. He is internationally known for his pioneering work in developing and applying machine learning methods in environmental sciences. He has published over eighty peer-reviewed journal publications covering areas of climate variability, machine learning, oceanography, atmospheric science and hydrology.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530283785
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing websites for downloading computer code and data sources. A resources website contains datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work. Machine learning methods are used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of these methods and their applications, and is a valuable resource for advanced undergraduates, graduates, and researchers and practitioners interested in applying such methods to their own work. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781108456906
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 364. Bestandsnummer des Verkäufers 26379592801
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 349 pages. 9.50x6.75x1.00 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1108456901
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108456906_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 364. Bestandsnummer des Verkäufers 383229886
Anzahl: 1 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781108456906
Anzahl: 10 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 364. Bestandsnummer des Verkäufers 18379592811
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 636. Bestandsnummer des Verkäufers C9781108456906
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 349 pages. 9.50x6.75x1.00 inches. In Stock. Bestandsnummer des Verkäufers x-1108456901
Anzahl: 2 verfügbar