This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ron Bekkerman is a computer engineer and scientist whose experience spans across disciplines from video processing to business intelligence. Currently a senior research scientist at LinkedIn, he previously worked for a number of major companies including Hewlett-Packard and Motorola. Bekkerman's research interests lie primarily in the area of large-scale unsupervised learning. He is the corresponding author of several publications in top-tier venues, such as ICML, KDD, SIGIR, WWW, IJCAI, CVPR, EMNLP and JMLR.
Mikhail Bilenko is a researcher in the Machine Learning and Intelligence group at Microsoft Research. His research interests center on machine learning and data mining tasks that arise in the context of large behavioral and textual datasets. Bilenko's recent work has focused on learning algorithms that leverage user behavior to improve online advertising. His papers have been published at KDD, ICML, SIGIR, and WWW among other venues, and he has received best paper awards from SIGIR and KDD.
John Langford is a computer scientist working as a senior researcher at Yahoo! Research. Previously, he was affiliated with the Toyota Technological Institute and IBM T. J. Watson Research Center. Langford's work has been published at conferences and in journals including ICML, COLT, NIPS, UAI, KDD, JMLR and MLJ. He received the Pat Goldberg Memorial Best Paper Award, as well as best paper awards from ACM EC and WSDM. He is also the author of the popular machine learning weblog, hunch.net.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530283953
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 31817623-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781108461740
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 31817623
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Reprint edition rsity Press UK NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26376285547
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st reprint edition. 492 pages. 9.88x7.01x1.50 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1108461743
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781108461740
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108461740_new
Anzahl: 1 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-GRD-9781108461740
Anzahl: 1 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781108461740
Anzahl: 10 verfügbar