Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Simo Särkkä is Associate Professor in the Department of Electrical Engineering and Automation at Aalto University, Finland. His research interests center on state estimation and stochastic modeling, and he has authored two books (2013 and 2019) on these topics. He is Fellow of ELLIS, Senior Member of IEEE, a recipient of multiple paper awards, and he has been Chair of MLSP and FUSION conferences.
Lennart Svensson is Professor in the Department of Electrical Engineering at Chalmers University of Technology, Gothenberg. His research focuses on nonlinear filtering, deep learning, and tracking in particular. He has organized a massive open online course on multiple object tracking, and received paper awards at the International Conference on Information Fusion in 2009, 2010, 2017, 2019, and 2021.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 12,43 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,75 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Very Good. Bestandsnummer des Verkäufers mon0003808575
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781108926645
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18395313374
Anzahl: 1 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: As New. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1108926649-10-1
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26395313364
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorSimo Saerkkae is Associate Professor in the Department of Electrical Engineering and Automation at Aalto University, Finland. His research interests center on state estimation and stochastic modeling, and he has authored. Bestandsnummer des Verkäufers 785534915
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - 'Now in its second edition, this accessible text presents a unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with the Matlab and Python code available online, enabling readers to implement the algorithms in their own projects'--. Bestandsnummer des Verkäufers 9781108926645
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 401063691
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108926645_new
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 629. Bestandsnummer des Verkäufers C9781108926645
Anzahl: Mehr als 20 verfügbar