This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Hui Jiang is Professor of Electrical Engineering and Computer Science at York University, where he has been since 2002. His main research interests include machine learning, particularly deep learning, and its applications to speech and audio processing, natural language processing, and computer vision. Over the past 30 years, he has worked on a wide range of research problems from these areas and published hundreds of technical articles and papers in the mainstream journals and top-tier conferences. His works have won the prestigious IEEE Best Paper Award and the ACL Outstanding Paper honor.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. New. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Bestandsnummer des Verkäufers 1108940021-11-1
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 42949723-n
Anzahl: 2 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Machine Learning Fundamentals: A Concise Introduction. Book. Bestandsnummer des Verkäufers BBS-9781108940023
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2317530289180
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781108940023
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 42949723
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 418. Bestandsnummer des Verkäufers 26389700292
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 418. Bestandsnummer des Verkäufers 390980891
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 400 pages. 10.00x8.00x1.00 inches. In Stock. Bestandsnummer des Verkäufers __1108940021
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781108940023_new
Anzahl: 2 verfügbar