Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. * Examine fraud patterns in historical data * Utilize labeled, unlabeled, and networked data * Detect fraud before the damage cascades * Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.
THE DEFINITIVE GUIDE TO THE DETECTION AND PREVENTION OF FRAUD THROUGH DATA ANALYTICS
Catch fraud early! Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques shows you how with a thorough overview of how to prevent losses and recover quickly as well as the security issues you need to address now. Exploring how auditors, corporate security prevention managers, and fraud prevention professionals can stay one step ahead of cyber criminals, this book addresses the different types of analytics in detecting fraud, including descriptive analytics, predictive analytics, and social network analysis.
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques offers a current, state-of-the-art detection and prevention methodology, describing the data necessary to detect fraud. Taking you from the basics of fraud detection data analytics, through advanced pattern recognition methodology, to cutting-edge social network analysis and fraud ring detection, this book presents essential coverage of:
Insightful and clearly written, this hands-on guide reveals what you need to know about fraud analytics and the secret to putting historical data to work in the fight against fraud.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,34 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 51943504-6
Anzahl: 1 verfügbar
Anbieter: Textbooks_Source, Columbia, MO, USA
hardcover. Zustand: Good. 1st Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Bestandsnummer des Verkäufers 001841143U
Anzahl: 1 verfügbar
Anbieter: Patrico Books, Apollo Beach, FL, USA
hardcover. Zustand: Good. Ships Out Tomorrow! Bestandsnummer des Verkäufers 240507013
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Bestandsnummer des Verkäufers 23681076-5
Anzahl: 1 verfügbar
Anbieter: Harry Alter, Sylva, NC, USA
hardcover, Zustand: Very Good, Wiley, NY, c.2015, 1st., 8vo., hardcover, 367pp., VG+/VG+ $. Bestandsnummer des Verkäufers 99175
Anzahl: 1 verfügbar
Anbieter: TextbookRush, Grandview Heights, OH, USA
Zustand: Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Bestandsnummer des Verkäufers 53265664
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 23681076
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 23681076-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Hardback or Cased Book. Zustand: New. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection 1.3. Book. Bestandsnummer des Verkäufers BBS-9781119133124
Anzahl: 5 verfügbar
Anbieter: Lakeside Books, Benton Harbor, MI, USA
Zustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Bestandsnummer des Verkäufers OTF-S-9781119133124
Anzahl: Mehr als 20 verfügbar