Computational Methods for Electromagnetic Inverse Scattering (IEEE Press) - Hardcover

Chen, Xudong

 
9781119311980: Computational Methods for Electromagnetic Inverse Scattering (IEEE Press)

Inhaltsangabe

A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems

  • Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications
  • Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods
  • Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems
  • Written by a leading expert in the field

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Xudong Chen, received the B.S. and M.S. degrees in electrical engineering from Zhejiang University, Hangzhou, China, in 1999 and 2001, respectively, and the Ph.D. degree from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2005. Since then he joined the Department of Electrical and Computer Engineering, National University of Singapore, Singapore, and he is currently an Associate Professor. His research interests include mainly electromagnetic inverse problems. He has published more than 120 peer-reviewed journal papers on inverse scattering problems, material parameter retrieval, and optical encryption. The total citation of his papers is about 2,500 according to ISI Web of Science till Dec 2015. He visited the University of Paris-SUD 11 in May-June 2010 as an invited visiting Associate Professor. He was the recipient of the Young Scientist Award by the Union Radio-Scientifique Internationale (URSI) in 2010 and Engineering Young Researcher Award by FOE, National University of Singapore in 2015. He is currently an Associate Editor of the IEEE Transactions on Microwave Theory and Techniques.

Von der hinteren Coverseite

Computational Methods for Electromagnetic Inverse Scattering

Xudong Chen, National University of Singapore, Singapore

This book offers a comprehensive and updated overview of the theory, algorithms and applications of electromagnetic inverse scattering problems. Fundamental theories including mathematical derivation and physical insights of both forward and inverse electromagnetic scattering will be emphasized, and 2-dimentional and 3-dimensional problems covered. Readers will be introduced to reconstruction algorithms for both small-size and large-size scatterers, as well as qualitative and quantitative reconstruction algorithms. Inverse scattering taking into account different boundary conditions are also discussed before imaging resolution and applications are tackled from a new perspective.

  • Offers important advances in electromagnetic inverse scattering grounded in fundamental theory, algorithms and practical engineering applications
  • Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods
  • Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems

Written by a leading expert in the field, Numerical Methods for Electromagnetic Inverse Scattering is an essential reference for researchers in electrical engineering, physics and applied mathematics. Graduate students and practicing engineers specializing in areas like remote sensing, military surveillance, biomedical diagnosis, nondestructive testing/evaluation, and oil exploration would also find it an insightful guide.

Aus dem Klappentext

Computational Methods for Electromagnetic Inverse Scattering

Xudong Chen, National University of Singapore, Singapore

This book offers a comprehensive and updated overview of the theory, algorithms and applications of electromagnetic inverse scattering problems. Fundamental theories including mathematical derivation and physical insights of both forward and inverse electromagnetic scattering will be emphasized, and 2-dimentional and 3-dimensional problems covered. Readers will be introduced to reconstruction algorithms for both small-size and large-size scatterers, as well as qualitative and quantitative reconstruction algorithms. Inverse scattering taking into account different boundary conditions are also discussed before imaging resolution and applications are tackled from a new perspective.

  • Offers important advances in electromagnetic inverse scattering grounded in fundamental theory, algorithms and practical engineering applications
  • Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods
  • Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems

Written by a leading expert in the field, Numerical Methods for Electromagnetic Inverse Scattering is an essential reference for researchers in electrical engineering, physics and applied mathematics. Graduate students and practicing engineers specializing in areas like remote sensing, military surveillance, biomedical diagnosis, nondestructive testing/evaluation, and oil exploration would also find it an insightful guide.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.