Examines the design and use of Intrusion Detection Systems (IDS) to secure Supervisory Control and Data Acquisition (SCADA) systems
Cyber-attacks on SCADA systems—the control system architecture that uses computers, networked data communications, and graphical user interfaces for high-level process supervisory management—can lead to costly financial consequences or even result in loss of life. Minimizing potential risks and responding to malicious actions requires innovative approaches for monitoring SCADA systems and protecting them from targeted attacks. SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is designed to help security and networking professionals develop and deploy accurate and effective Intrusion Detection Systems (IDS) for SCADA systems that leverage autonomous machine learning.
Providing expert insights, practical advice, and up-to-date coverage of developments in SCADA security, this authoritative guide presents a new approach for efficient unsupervised IDS driven by SCADA-specific data. Organized into eight in-depth chapters, the text first discusses how traditional IT attacks can also be possible against SCADA, and describes essential SCADA concepts, systems, architectures, and main components. Following chapters introduce various SCADA security frameworks and approaches, including evaluating security with virtualization-based SCADAVT, using SDAD to extract proximity-based detection, finding a global and efficient anomaly threshold with GATUD, and more. This important book:
SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is a must-read for all SCADA security and networking researchers, engineers, system architects, developers, managers, lecturers, and other SCADA security industry practitioners.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
ABDULMOHSEN ALMALAWI, PHD, is Assistant Professor, Department of Computer Science, University of King Abdulaziz, Saudi Arabia. His research is focused on machine learning. He is co-author of Network Classification for Traffic Management.
ZAHIR TARI, PHD, is Professor at RMIT University, Australia. He is on the editorial board of several journals, including ACM Computing Surveys, IEEE Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems, and IEEE Cloud Computing.
ADIL FAHAD, PHD, is Assistant Professor, Department of Computer Science, University of Albaha, Saudi Arabia. His research interests are in the areas of wireless sensor networks, mobile networks, SCADA security, and ad-hoc networks with emphasis on data mining, statistical analysis/modelling, and machine learning.
XUN YI, PHD, is Professor, School of Computer Science and Information Technology, RMIT University, Australia. He has published more than 150 research papers in international journals and has led several Australia Research Council (ARC) Discovery projects. He is Associate Editor of IEEE Transactions on Dependable and Secure Computing.
Examines the design and use of Intrusion Detection Systems (IDS) to secure Supervisory Control and Data Acquisition (SCADA) systems
Cyber-attacks on SCADA systems--the control system architecture that uses computers, networked data communications, and graphical user interfaces for high-level process supervisory management--can lead to costly financial consequences or even result in loss of life. Minimizing potential risks and responding to malicious actions requires innovative approaches for monitoring SCADA systems and protecting them from targeted attacks. SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is designed to help security and networking professionals develop and deploy accurate and effective Intrusion Detection Systems (IDS) for SCADA systems that leverage autonomous machine learning.
Providing expert insights, practical advice, and up-to-date coverage of developments in SCADA security, this authoritative guide presents a new approach for efficient unsupervised IDS driven by SCADA-specific data. Organized into eight in-depth chapters, the text first discusses how traditional IT attacks can also be possible against SCADA, and describes essential SCADA concepts, systems, architectures, and main components. Following chapters introduce various SCADA security frameworks and approaches, including evaluating security with virtualization-based SCADAVT, using SDAD to extract proximity-based detection, finding a global and efficient anomaly threshold with GATUD, and more. This important book:
SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is a must-read for all SCADA security and networking researchers, engineers, system architects, developers, managers, lecturers, and other SCADA security industry practitioners.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,14 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 17,14 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 42439576-n
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. ABDULMOHSEN ALMALAWI, PHD, is Assistant Professor, Department of Computer Science, University of King Abdulaziz, Saudi Arabia. His research is focused on machine learning. He is co-author of Network Classification for Traffic Management.ZAHIR TARI, PHD, is . Bestandsnummer des Verkäufers 378036852
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781119606031
Anzahl: 15 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 42439576
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781119606031_new
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 476. Bestandsnummer des Verkäufers B9781119606031
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers IB-9781119606031
Anzahl: 15 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 42439576
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2021. 1st Edition. Hardback. . . . . . Bestandsnummer des Verkäufers V9781119606031
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Examines the design and use of Intrusion Detection Systems (IDS) to secure Supervisory Control and Data Acquisition (SCADA) systemsCyber-attacks on SCADA systems-the control system architecture that uses computers, networked data communications, and graphical user interfaces for high-level process supervisory management-can lead to costly financial consequences or even result in loss of life. Minimizing potential risks and responding to malicious actions requires innovative approaches for monitoring SCADA systems and protecting them from targeted attacks. SCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is designed to help security and networking professionals develop and deploy accurate and effective Intrusion Detection Systems (IDS) for SCADA systems that leverage autonomous machine learning.Providing expert insights, practical advice, and up-to-date coverage of developments in SCADA security, this authoritative guide presents a new approach for efficient unsupervised IDS driven by SCADA-specific data. Organized into eight in-depth chapters, the text first discusses how traditional IT attacks can also be possible against SCADA, and describes essential SCADA concepts, systems, architectures, and main components. Following chapters introduce various SCADA security frameworks and approaches, including evaluating security with virtualization-based SCADAVT, using SDAD to extract proximity-based detection, finding a global and efficient anomaly threshold with GATUD, and more. This important book:\* Provides diverse perspectives on establishing an efficient IDS approach that can be implemented in SCADA systems\* Describes the relationship between main components and three generations of SCADA systems\* Explains the classification of a SCADA IDS based on its architecture and implementation\* Surveys the current literature in the field and suggests possible directions for future researchSCADA Security: Machine Learning Concepts for Intrusion Detection and Prevention is a must-read for all SCADA security and networking researchers, engineers, system architects, developers, managers, lecturers, and other SCADA security industry practitioners. Bestandsnummer des Verkäufers 9781119606031
Anzahl: 1 verfügbar