Verwandte Artikel zu A treatise on spherical trigonometry Volume 1 ; with...

A treatise on spherical trigonometry Volume 1 ; with applications to spherical geometry and numerous examples - Softcover

 
9781130907957: A treatise on spherical trigonometry Volume 1 ; with applications to spherical geometry and numerous examples

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1886 Excerpt: ... a cos 0 cos 7 1 + cos a + cos b + cos e. = i = =------= si n o; a b e a, o e cos-cos--cos-4 cos-cos--cos--2 2 2 2 2 2 and hence, if one of the arcs be a quadrant, the triangle-whose sides are a, $, and 7 is quadrantal. (See Ex. 3.) 5. If the side c of a spherical triangle be a quadrant, and 5 the arc drawn at right angles to it from the opposite vertex, show that cot2 5 = cot2-4 + cot2 B. Science and Art Exam. Fapen.) Let x be the foot of the perpendicular 5 on the base AS; therefore tan 5 = tan A. sin AX = tan B. cos AX; therefore, &c. G. Given the vertical angle in position and magnitude, and the ratio of the cosines of the base angles, find the locus of the pole of the base. Let the perpendicular on the base divide the vertical angle into parts o and 0; then by Art. 26, Ex. 6, cos A sin a cos B sin P' therefore the perpendicular is fixed in direction, and it obviously contains the pole of the base; therefore, &c. 7. Prove that in fig. 18 2cot XY = cot A Y + cot BY For sin AY _ sin AX-sin (AY-XY) smBY sin XB sin (XY-BY)' therefore, &c. 8. If a, b, c, d be the sides of a spherical quadrilateral taken in order, and 5 and 8' the diagonals; the arc p joining the middle points of the diagonals is given by the equation cos a + cos b + cos c. + cos d cosf» = 5-&, 4 cos-cos--2 2 and give the corresponding theorem in piano. (See Art. 36, Ex. 14.) The sum of the squares of the sides of a quadrilateral = the sum of the squares of its diagonals + four times the square of the line joining the middle points of the diagonals. (See M'Dowell's Geom. Exercises.) 9. The arc p joining the middle points of the opposite sides c and d of a quadrilateral is given by the equation cos a + cos b + cos 5 + cos 5' An arc AB divided internally in X and externally...

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1886 Excerpt: ... a cos 0 cos 7 1 + cos a + cos b + cos e. = i = =------= si n o; a b e a, o e cos-cos--cos-4 cos-cos--cos--2 2 2 2 2 2 and hence, if one of the arcs be a quadrant, the triangle-whose sides are a, $, and 7 is quadrantal. (See Ex. 3.) 5. If the side c of a spherical triangle be a quadrant, and 5 the arc drawn at right angles to it from the opposite vertex, show that cot2 5 = cot2-4 + cot2 B. Science and Art Exam. Fapen.) Let x be the foot of the perpendicular 5 on the base AS; therefore tan 5 = tan A. sin AX = tan B. cos AX; therefore, &c. G. Given the vertical angle in position and magnitude, and the ratio of the cosines of the base angles, find the locus of the pole of the base. Let the perpendicular on the base divide the vertical angle into parts o and 0; then by Art. 26, Ex. 6, cos A sin a cos B sin P' therefore the perpendicular is fixed in direction, and it obviously contains the pole of the base; therefore, &c. 7. Prove that in fig. 18 2cot XY = cot A Y + cot BY For sin AY _ sin AX-sin (AY-XY) smBY sin XB sin (XY-BY)' therefore, &c. 8. If a, b, c, d be the sides of a spherical quadrilateral taken in order, and 5 and 8' the diagonals; the arc p joining the middle points of the diagonals is given by the equation cos a + cos b + cos c. + cos d cosf» = 5-&, 4 cos-cos--2 2 and give the corresponding theorem in piano. (See Art. 36, Ex. 14.) The sum of the squares of the sides of a quadrilateral = the sum of the squares of its diagonals + four times the square of the line joining the middle points of the diagonals. (See M'Dowell's Geom. Exercises.) 9. The arc p joining the middle points of the opposite sides c and d of a quadrilateral is given by the equation cos a + cos b + cos 5 + cos 5' An arc AB divided internally in X and externally...

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagRareBooksClub.com
  • Erscheinungsdatum2012
  • ISBN 10 1130907953
  • ISBN 13 9781130907957
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten26
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9781330431627: A Treatise on Spherical Trigonometry: With Applications to Spherical Geometry and Numerous Examples (Classic Reprint)

Vorgestellte Ausgabe

ISBN 10:  1330431626 ISBN 13:  9781330431627
Verlag: Forgotten Books, 2018
Softcover