The LP recourse problem applies to two-stage optimization problems where uncertainty in resource availability of the second stage hinders informed decision making. The recourse function affords a way to compensate "later" for an error in prediction "now." The literature provides a rich body of work on the optimization of such problems, but little research has been accomplished regarding the characterization of the surface in the local region of optimality, in particular sensitivity analysis. A decision maker faced with considerations other than the modeled objective function must be presented with a way to estimate the impact of operating at non-optimal decision variable values. This work develops and demonstrates a technique for characterizing the surface using response surface methodology. Specifically, the flexibility and utility of RSM techniques applied to this class of problems is demonstrated, and a methodology for characterizing the surface in the local region using a low-order polynomial is developed.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The LP recourse problem applies to two-stage optimization problems where uncertainty in resource availability of the second stage hinders informed decision making. The recourse function affords a way to compensate "later" for an error in prediction "now." The literature provides a rich body of work on the optimization of such problems, but little research has been accomplished regarding the characterization of the surface in the local region of optimality, in particular sensitivity analysis. A decision maker faced with considerations other than the modeled objective function must be presented with a way to estimate the impact of operating at non-optimal decision variable values. This work develops and demonstrates a technique for characterizing the surface using response surface methodology. Specifically, the flexibility and utility of RSM techniques applied to this class of problems is demonstrated, and a methodology for characterizing the surface in the local region using a low-order polynomial is developed.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530018012
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 19026768-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781249586760
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781249586760
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781249586760
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781249586760
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 19026768-n
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781249586760
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Two-Stage Stochastic Linear Programming with Recourse: A Characterization of Local Regions Using Response Surface Methodology. Book. Bestandsnummer des Verkäufers BBS-9781249586760
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnThe LP recourse problem applies to two-stage optimization problems where uncertainty in resource availability of the second stage hinders informed decision making. The recourse function affords a way to compensate later for an e. Bestandsnummer des Verkäufers 6487624
Anzahl: Mehr als 20 verfügbar