Current attempts to prolong a robot's battery life focus on outdated techniques that have high overhead and are not built in to the underlying robotic architecture. In this thesis, battery life is extended through development of a behavior-based power management system, including a Markov decision process (MDP) power planner. This system examines sensors needed by the currently active behavior set and powers down those not required. Predictive power planning models the domain as an MDP problem in the Deliberator. The planner creates a power policy that accounts for current and future power requirements in stochastic domains. This provides a power plan that uses lower-power consuming devices at the start of a goal sequence in order to save power for the areas where higher-power consuming sensors are needed. Power savings are observed in two case studies: Low and high sensor intensity environments. Testing reveals that in a real life scenario involving multiple goals and multiple sensors, the robot's battery charge can be extended up to 96% longer when using this system over robots that rely on traditional power management.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Current attempts to prolong a robot's battery life focus on outdated techniques that have high overhead and are not built in to the underlying robotic architecture. In this thesis, battery life is extended through development of a behavior-based power management system, including a Markov decision process (MDP) power planner. This system examines sensors needed by the currently active behavior set and powers down those not required. Predictive power planning models the domain as an MDP problem in the Deliberator. The planner creates a power policy that accounts for current and future power requirements in stochastic domains. This provides a power plan that uses lower-power consuming devices at the start of a goal sequence in order to save power for the areas where higher-power consuming sensors are needed. Power savings are observed in two case studies: Low and high sensor intensity environments. Testing reveals that in a real life scenario involving multiple goals and multiple sensors, the robot's battery charge can be extended up to 96% longer when using this system over robots that rely on traditional power management.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,76 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,43 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530018269
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781249593621
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781249593621
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781249593621_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781249593621
Anzahl: 10 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 225. Bestandsnummer des Verkäufers C9781249593621
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnCurrent attempts to prolong a robot s battery life focus on outdated techniques that have high overhead and are not built in to the underlying robotic architecture. In this thesis, battery life is extended through development of a. Bestandsnummer des Verkäufers 6488028
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA796124959362X6
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Current attempts to prolong a robot's battery life focus on outdated techniques that have high overhead and are not built in to the underlying robotic architecture. In this thesis, battery life is extended through development of a behavior-based power management system, including a Markov decision process (MDP) power planner. This system examines sensors needed by the currently active behavior set and powers down those not required. Predictive power planning models the domain as an MDP problem in the Deliberator. The planner creates a power policy that accounts for current and future power requirements in stochastic domains. This provides a power plan that uses lower-power consuming devices at the start of a goal sequence in order to save power for the areas where higher-power consuming sensors are needed. Power savings are observed in two case studies: Low and high sensor intensity environments. Testing reveals that in a real life scenario involving multiple goals and multiple sensors, the robot's battery charge can be extended up to 96% longer when using this system over robots that rely on traditional power management. Bestandsnummer des Verkäufers 9781249593621
Anzahl: 2 verfügbar