The Mission Routing Problem (MRP) is the selection of a vehicle path starting at a point, going through enemy terrain defended by radar sites to get to the target(s) and returning to a safe destination (usually the starting point). The MRP is a three-dimensional, multi-objective path search with constraints such as fuel expenditure, time limits, multi-targets, and radar sites with different levels of risks. It can severely task all the resources (people, hardware, software) of the system trying to compute the possible routes. The nature of the problem can cause operational planning systems to take longer to generate a solution than the time available. Since time is critical in MRP, it is important that a solution is reached within a relatively short time. It is not worth generating the solution if it takes days to calculate since the information may become invalid during that time. Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) technique that tries to find optimal solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been shown to provide good solutions to Traveling Salesman Problem (TSP). PSO_AS is a synthesis of PSO and Ant System (AS). PSO_AS is a new approach for solving the MRP, and it produces good solutions. This thesis presents a new algorithm (PSO_AS) that functions to find the optimal solution by exploring the MRP search space stochastically.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The Mission Routing Problem (MRP) is the selection of a vehicle path starting at a point, going through enemy terrain defended by radar sites to get to the target(s) and returning to a safe destination (usually the starting point). The MRP is a three-dimensional, multi-objective path search with constraints such as fuel expenditure, time limits, multi-targets, and radar sites with different levels of risks. It can severely task all the resources (people, hardware, software) of the system trying to compute the possible routes. The nature of the problem can cause operational planning systems to take longer to generate a solution than the time available. Since time is critical in MRP, it is important that a solution is reached within a relatively short time. It is not worth generating the solution if it takes days to calculate since the information may become invalid during that time. Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) technique that tries to find optimal solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been shown to provide good solutions to Traveling Salesman Problem (TSP). PSO_AS is a synthesis of PSO and Ant System (AS). PSO_AS is a new approach for solving the MRP, and it produces good solutions. This thesis presents a new algorithm (PSO_AS) that functions to find the optimal solution by exploring the MRP search space stochastically.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,00 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 4,50 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781288307609
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781288307609_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnThe Mission Routing Problem (MRP) is the selection of a vehicle path starting at a point, going through enemy terrain defended by radar sites to get to the target(s) and returning to a safe destination (usually the starting point). Bestandsnummer des Verkäufers 6554550
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 289. Bestandsnummer des Verkäufers C9781288307609
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781288307609
Anzahl: 10 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - The Mission Routing Problem (MRP) is the selection of a vehicle path starting at a point, going through enemy terrain defended by radar sites to get to the target(s) and returning to a safe destination (usually the starting point). The MRP is a three-dimensional, multi-objective path search with constraints such as fuel expenditure, time limits, multi-targets, and radar sites with different levels of risks. It can severely task all the resources (people, hardware, software) of the system trying to compute the possible routes. The nature of the problem can cause operational planning systems to take longer to generate a solution than the time available. Since time is critical in MRP, it is important that a solution is reached within a relatively short time. It is not worth generating the solution if it takes days to calculate since the information may become invalid during that time. Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) technique that tries to find optimal solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been shown to provide good solutions to Traveling Salesman Problem (TSP). PSO_AS is a synthesis of PSO and Ant System (AS). PSO_AS is a new approach for solving the MRP, and it produces good solutions. This thesis presents a new algorithm (PSO_AS) that functions to find the optimal solution by exploring the MRP search space stochastically. Bestandsnummer des Verkäufers 9781288307609
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530031079
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79612883076086
Anzahl: 1 verfügbar