Hyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independent Component Analysis (ICA) Target Detection Method is proposed and validated. This new method resolves two main challenges encountered when implementing target detection methods using ICA, a high order statistics feature extraction (FE) method. The first challenge is the high computational demand imposed by the large volume of data associated with HSI during the FE process. To alleviate the effort required for ICA data processing, principal component analysis (PCA), a classical second order statistics method, is used for data reduction. Furthermore, the performance of using PCA under classification is compared against recently developed supervised FE techniques. The second challenge arises during the feature selection (FS) phase after the statistically independent components have been extracted. Current ICA target FS techniques have shown to be either unreliable or require significant user-intervention. A reliable FS process is essential in automating the target detection process. This proposed method uses ICA to extract independent features from the retained principal components, and is followed by an unsupervised target FS with a two-phase filtering process using kurtosis and mean silhouette values. This method achieved promising results when tested against a wide range of benchmark images.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Hyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independent Component Analysis (ICA) Target Detection Method is proposed and validated. This new method resolves two main challenges encountered when implementing target detection methods using ICA, a high order statistics feature extraction (FE) method. The first challenge is the high computational demand imposed by the large volume of data associated with HSI during the FE process. To alleviate the effort required for ICA data processing, principal component analysis (PCA), a classical second order statistics method, is used for data reduction. Furthermore, the performance of using PCA under classification is compared against recently developed supervised FE techniques. The second challenge arises during the feature selection (FS) phase after the statistically independent components have been extracted. Current ICA target FS techniques have shown to be either unreliable or require significant user-intervention. A reliable FS process is essential in automating the target detection process. This proposed method uses ICA to extract independent features from the retained principal components, and is followed by an unsupervised target FS with a two-phase filtering process using kurtosis and mean silhouette values. This method achieved promising results when tested against a wide range of benchmark images.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530031534
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781288319404
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781288319404
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781288319404
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781288319404_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 140. Bestandsnummer des Verkäufers 26390601241
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 140. Bestandsnummer des Verkäufers 390047174
Anzahl: 4 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 293. Bestandsnummer des Verkäufers C9781288319404
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 140. Bestandsnummer des Verkäufers 18390601235
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnHyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independe. Bestandsnummer des Verkäufers 6555257
Anzahl: Mehr als 20 verfügbar