A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Sean Meyn is a professor and holds the Robert C. Pittman Eminent Scholar Chair in the Department of Electrical and Computer Engineering, University of Florida. He is well known for his research on stochastic processes and their applications. His award-winning monograph Markov Chains and Stochastic Stability with R. L. Tweedie is now a standard reference. In 2015 he and Prof. Ana Busic received a Google Research Award recognizing research on renewable energy integration. He is an IEEE Fellow and IEEE Control Systems Society distinguished lecturer on topics related to both reinforcement learning and energy systems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 8,00 für den Versand von Frankreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-372394
Anzahl: 2 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781316511961
Anzahl: 2 verfügbar
Anbieter: San Francisco Book Company, Paris, Frankreich
Hardcover. Zustand: Very good. Hardcover Octavo. illustrated boards, 435 pp Standard shipping (no tracking or insurance) / Priority (with tracking) / Custom quote for large or heavy orders. Bestandsnummer des Verkäufers 103850
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9781316511961
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. The book is written for newcomers to reinforcement learning who wish to write code for various applications, from robotics to power systems to supply chains. It also contains advanced material designed to prepare graduate students and professionals for both. Bestandsnummer des Verkäufers 549119853
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781316511961_new
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - 'A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning'--. Bestandsnummer des Verkäufers 9781316511961
Anzahl: 2 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2022. New. Hardcover. . . . . . Bestandsnummer des Verkäufers V9781316511961
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18390160854
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 1041. Bestandsnummer des Verkäufers B9781316511961
Anzahl: Mehr als 20 verfügbar