This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of π, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Annette Huber is Professor for Number Theory at Albert-Ludwigs-Universität Freiburg. She works in arithmetic geometry and is a leading specialist in the theory of motives. Together with Stefan Müller-Stach, she authored the book Periods and Nori motives (2017). She was a speaker at the 2002 ICM and is a member of the German National Academy of Sciences, the Leopoldina.
Gisbert Wüstholz is Professor Emeritus at ETH Zurich. He is a leading researcher in transcendence theory and diophantine geometry. In 1986, he was an invited speaker at the ICM in Berkeley, in 1992 he gave the Mordell Lecture and in 2001 the Kuwait Foundation Lecture. He is Honorary Professor at Togji University Shanghai and at TU Graz. He is an elected member of four academies including the Leopoldina and has published six books.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This work answers long-standing open questions in transcendence theory and finalises the theory of linear relations of 1-periods. It serves as a detailed and modern introduction for graduate students and young researchers to the beautiful world of transcend. Bestandsnummer des Verkäufers 549119869
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781316519936_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 389471908
Anzahl: 3 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 500. Bestandsnummer des Verkäufers C9781316519936
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781316519936
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 263 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1316519937
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. New edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26390160763
Anzahl: 3 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18390160753
Anzahl: 3 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of p, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data. This work answers long-standing open questions in transcendence theory and finalises the theory of linear relations of 1-periods. It serves as a detailed and modern introduction for graduate students and young researchers to the beautiful world of transcendence. The authors include foundational material and link examples back to classical results. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781316519936
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This work answers long-standing open questions in transcendence theory and finalises the theory of linear relations of 1-periods. It serves as a detailed and modern introduction for graduate students and young researchers to the beautiful world of transcendence. The authors include foundational material and link examples back to classical results. Bestandsnummer des Verkäufers 9781316519936
Anzahl: 1 verfügbar